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Abstract

Iterative feedback-directed optimization is now
a popular technique to obtain better perfor-
mance and code size improvements for stati-
cally compiled programs over the default set-
tings in a compiler. The offline evalua-
tion of multiple optimization strategies for a
given program is a potentially costly operation.
The number of iterations typically grows with
the complexity of the program transformation
search space, and with the number of input
datasets used for performance assessment. In
addition, as the behavior of a program can vary
considerably across different datasets, it is of-
ten preferable to generate different optimiza-
tion versions, covering the full spectrum of the
program’s representative datasets.

Continuous and collective optimization are tar-
geted at these issues. Continuous optimization
searches for the best program transformation at
run-time, taking advantages of the phase be-
havior of programs to evaluate multiple opti-
mization versions within a single run, and dy-
namically adapting to changing execution con-
texts. Collective optimization interleaves op-
timization iterations with program executions

along the lifetime of the program. In both
cases, the user expects the optimization process
to learn from the past execution contexts and
program behavior. The user also assumes the
system will be fully transparent, take negligible
overhead for the incremental profiling, learn-
ing, decision and code generation steps, while
bringing significant performance benefits over
the lifetime of the program.

In order to explore multiple optimization op-
tions, we propose a simple and practical solu-
tion based on cloning of all procedures, apply-
ing any complex optimizations to these clones
and randomly selecting either original or trans-
formed procedures at run-time. Obtaining ex-
ecution time distribution among original and
cloned procedures, we can statistically deter-
mine the influence of compiler optimizations
on the code in a single run. The simplicity
of the implementation makes this technique re-
liable, secure and easy to debug. Yet it en-
ables practical transparent low-overhead con-
tinuous optimizations for programs statically
compiled with GCC while avoiding complex
dynamic recompilation frameworks. In addi-
tion, our framework can enable program self-
adaptation at fine-grain level for different en-
vironments such as parallel heterogeneous and
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reconfigurable systems with different ISA, and
for different constraints such as performance,
code size and power consumption.

1 Introduction

Static compilation often fails to deliver fastest
program on modern architectures due to a large
number of possible optimizations, simplistic
models of rapidly evolving hardware, lack of
run-time information and inability to dynami-
cally adapt to changes in program and/or sys-
tem behavior. Recently, iterative compila-
tion became a popular approach to search for
the best selection of compiler transformations
that optimizes a program for different objec-
tive functions such as program performance,
code size and power consumption on a partic-
ular architecture and for a particular workload
(dataset) [10, 26, 15, 16, 14, 28, 22, 43, 41, 18,
37, 21, 24, 34, 17, 35, 36, 25, 9, 20, 27, 11].
Several configurable tools are already provided
for the compiler suites to search for the best
combination of compiler flags [7, 1, 3]. Iter-
ative optimization has also been employed in
well-known library generators in such systems
as ATLAS [46], FFTW [32] and SPIRAL [38]
to tune parameters of various transformations
to get best performance on a targeted plat-
form. However, in most of the cases, practi-
cal applicability of iterative compilation is lim-
ited due to often intolerable excessive over-
head of compiling and running program multi-
ple times to evaluate every optimization setting
and inability to reuse optimization knowledge
between different programs, architectures and
workloads.

Machine learning has been recently introduced
to tackle the problem of growing complex-
ity of the systems, compilers and optimiza-
tions, speed up the search for the best opti-
mizations, and enable optimization knowledge

reuse among different programs [33, 41, 40,
12, 47, 9, 11]. However, current techniques
are still limited by the large amount of off-
line runs needed to train the model and inabil-
ity to dynamically adapt to changing environ-
ment for statically compiled programs. Some
of these issues can be solved in dynamic com-
pilation environments but often with a cost of
shipping complex, resource-hungry or limited
in their abilities run-time recompilation frame-
works [45, 44, 13, 31, 29, 42].

To solve these issues and make iterative com-
pilation practical for statically compiled pro-
grams, we started developing a Continuous
Collective Compilation framework [2]. This
framework is based on previous research on
dynamic selection of complex compiler opti-
mizations during stable program phases using
static multi-versioning [21, 30, 20] and on anal-
ysis of the sensitivity of compiler optimiza-
tions towards different datasets [19, 6]. To en-
able transparent collection of statistics without
the need to run programs a number of times
with the same dataset for detecting the base
line performance, we clone and optimize all or
most time-consuming subroutines during com-
pilation. For assessing the average influence of
program optimizations in one run, we randomly
select at run-time the version of the function to
be executed. We continuously collect the dis-
tribution of time spent in both the original and
the cloned and optimized parts of the program.
This will allow various users to participate in
the collection of the global optimizations statis-
tics for a large number of statically compiled
programs transparently and continuously. We
implemented this technique in GCC which is
well suited for this task—it is free software and
has a large user base.

Our technique can now be used to collect opti-
mization statistics from all users based on their
applications and workloads instead of selecting
some representative benchmarks, datasets and
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running them multiple numbers of times for
each individual user and architecture. This data
will be used later to build optimization mod-
els and enable global optimization knowledge
reuse to improve both programs and compiler
optimization heuristic (pool of best default op-
timization flags for example). It is based on
our research on machine learning and statisti-
cal techniques to narrow down the optimization
search space and quickly find best compiler
flags using program static features and dynamic
characteristics (hardware counters) [17, 9, 11].
We believe that this framework can consider-
ably improve the program optimization process
and automatic tuning of a compiler heuristic for
new architectures using machine learning and
statistical techniques.

2 Cloning and run-time version se-
lection

Finding best compiler settings for a program,
building an optimization model using machine
learning or statistical techniques and improv-
ing compiler optimization heuristic are tedious
and time consuming tasks that require a large
number of runs of the program. It could
be speeded up considerably if the information
from multiple users about program optimiza-
tions could be shared transparently, however
it is currently problematic for statically com-
piled programs since all users have to execute
the same code with the same dataset multiple
times to be able to compare the effect of dif-
ferent optimizations on the code as shown in
Figure 1(a,b). Therefore, to enable transparent
Continuous Collective Compilation, we devel-
oped a technique within GCC that clones all
or most time-consuming code sections (proce-
dures or functions) of the program, applying
different compiler optimizations for the clones,
and randomly selecting at run-time, for each in-
vocation, either the original code section with

the baseline optimization or the clone, as shown
in Figure 1(c).

We use gprof to collect the informations
about the total time tt spent in a function, and
the number of calls nc to that function. We nor-
malize the time spent in the function by com-
puting the average time avt= tt

nc spent in the
function.

In order to determine the effect of the tested
transformations, we compute the speedup of
the cloned function with respect to the original

function, as: s=
avtoriginal
avtcloned

.

In the statistical evaluation framework, several
runs of the function lead to a sequence of eval-
uations of the speedup s1, . . . ,sn. It is possi-
ble to compute from this information the ex-
pected speedup value e = ∑n

i=1si/n, the vari-
ance v= ∑n

i=1(si−e)2, and infer from this the
dependence of the code transformation on the
processed data.

Naturally, since the input data vary across calls
to the original or cloned subroutines, we con-
tinuously monitor the variance v to detect the
convergence across executions. If there is no
convergence, this data is currently skipped un-
less more complex techniques are used (such as
in [21] to detect stable program phases, for ex-
ample). Despite this limitation, obtaining data
from a large number of users should be already
sufficient to use machine learning or statistical
techniques to search for the best optimizations
or improve default compiler heuristic.

3 Implementation

We describe the minimal implementation that
we realized for prototyping this system, then
we propose improvements to this prototype to
make the user interface more flexible for a po-
tential integration in GCC.
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Figure 1: Comparison of standard, iterative and continuous compilation techniques

3.1 Prototype

The prototype implementation in GCC contains
two parsers for the set of functions to be cloned,
and for the set of options to be applied to the
cloned functions. These two sets are provided
by the programmer in environment variables
GCC_ADAPT_OPT and GCC_ADAPT_FUNCS.

The function cloning is based on the infras-
tructure for function versioning also used in
the interprocedural constant propagation. The
functions created by the function versioning
are automatically named, making the task of
recognizing the link between the original and
the cloned functions difficult. We rename the
newly created functions based on the orig-
inal function name and appending a suffix
.cloned, such that the programmer can sim-
ply recognize the original functions and their
cloned versions in the output of function level
profiling tools, such as gprof.

After having created the cloned version, we
transform the original function as illustrated in
Figure 2. At the beginning of the original func-
tion we insert a call to a selection function that
determines which version of the code should
be executed. In the minimal implementation of
this library, that we used for the experiments,
we setup a random number generator and the
selection function produces a random boolean
result.

In the advanced implementation, the program-
mer can provide its own selection function in
an external library that has to be linked in
with the program to enable various customiz-
able run-time adaptation techniques. This ex-
ternal library contains two other functions for
the initialization and finalization of the struc-
tures used in the selection function.

unsigned int gcc_adapt_select (void);
void gcc_adapt_init (void);
void gcc_adapt_fini (void);
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Figure 2: Transforming a function body by inserting a condition expression “select,” the call to the
cloned function “call clone,” and the original code contained in the function body.

The advanced implementation will also make it
possible to specify different optimization flags
for different functions by using an external
configuration file. This configuration file will
have a syntax close to the declarative syntax of
makefiles:

<rules> ::= <rule>
| <rule> <newline> <rules>

<rule> ::= <fns> : <flags>
<fns> ::= <fn_name>

| <fn_name> <fns>
<flags> ::= <flag>

| <flag> <flags>

4 Experiments and Usage Scenar-
ios

We implemented our technique in the GCC 4
series and performed experiments on the Dell
Precision 390 N-Series Server with Intel Core
2 Duo processor E6300 (1.86 Ghz/ 2 MB Cache
/ 1066Mhz FSB) and Mandriva Linux 2006.
To demonstrate the use of our technique we
selected two well-known programs: mgrid
from the SPEC2006 benchmark suite [39] and
jpeg_encoder from MiBench benchmark
suite [23] that has several most time-consuming
subroutines with varying run-time input data.

First, we ran unmodified mgrid with ref and
train datasets, and jpeg_encoderwith small
and large inputs. We selected three optimiza-
tion levels (-O1,-O2,-O3) and show their re-
spective speedups with respect to the default
GCC optimization level in Table 1.

Later, we select two most time-consuming pro-
cedures for each benchmark, clone them and
compile with different optimization levels. Af-
ter executing each benchmark 10 times (5 with
train dataset and 5 with ref dataset), we ob-
tain the time distribution among original and
cloned procedures and the number of calls to
each procedure using gprof. Table 2 shows
the speedups of the cloned procedures with re-
spect to the original ones (normalized with the
number of procedure calls), expected speedup
values and the variance.

Finally, Figure 3 compares the speedups of the
unmodified programs with the speedups of the
cloned procedures for three optimization levels.
These experiments show that we can effectively
evaluate the influence of different compiler op-
timizations on various code sections of stati-
cally compiled programs at run-time and use
that information to improve performance. As
mentioned earlier, this framework can be used
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Application, dataset speedup (-O1) speedup (-O2) speedup (-O3)
mgrid, train dataset 2.75 3.64 3.62
mgrid, ref dataset 2.64 3.42 3.40
jpeg_encoder, small dataset 1.66 1.70 1.71
jpeg_encoder, large dataset 1.56 1.54 1.60

Table 1: Speedups for three optimization levels with respect to the default compiler optimization
level for the selected unmodified benchmarks

expected speedup expected speedup expected speedup
Application, procedure (-O1),v (-O2),v (-O3),v
mgrid, proc1 2.38, 0.21 3.27, 0.32 3.35. 0.33
mgrid, proc2 2.25, 0.30 3.20, 0.39 3.24, 0.37
jpeg_encoder, proc1 1.92, 0.16 1.98, 0.14 1.95, 0.17
jpeg_encoder, proc2 1.12, 0.09 1.25, 0.11 1.27, 0.09

Table 2: Expected speedups for three optimization levels with respect to the default compiler
optimization level for the selected benchmarks with cloned procedures and their variance

0

0.5

1

1.5

2

2.5

3

3.5

4

mgrid (train dataset) mgrid (ref dataset) jpeg_encoder (small dataset) jpeg_encoder (large dataset)

speedup for unmodified program expected speedup for proc1 expected speedup for proc2
 

Figure 3: Comparison of the speedups of unmodified programs with the expected speedups of the
cloned procedures for -O3 optimization level

for multiple purposes and one of them is Con-
tinuous Collective Compilation. This optimiza-
tion approach is similar to the common local
iterative feedback-directed compilation except
that it will exchange information at each opti-
mization step with the global server that keeps
and reuses optimization information collected
transparently from multiple users. Based on
the server data, it will suggest the best opti-
mizations for a specific program using machine
learning and both static and dynamic (hardware

counters) features [9, 19] as shown in Figure 4.

5 Conclusions and Future Work

In this article we present the technique we im-
plemented in GCC that allows to determine
the influence of compiler optimizations on stat-
ically compiled programs during continuous
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Figure 4: Using our technique to enable Continuous Collective Compilation

runs with any datasets and improve perfor-
mance. This technique eliminates the need for
additional program runs with the same inputs
only to obtain the baseline performance. It is
achieved through cloning of all or most time-
consuming code sections statically and apply-
ing evaluated optimizations on these clones.
Later at run-time we randomly select either
original version with the baseline optimizations
or the clone during execution at each invocation
of this code part and obtain the execution time
distribution among original and cloned versions
with gprof to determine the average speedup
when there is a convergence during continuous
runs. Though simple, this technique enables
continuous collective compilation for statically
compiled programs when multiple users trans-
parently share information about behavior of
their programs to collectively improve program
performance or default compiler optimization
heuristic.

We plan to improve our technique to provide
a low-overhead execution time coverage in-
stead of gprof and improve adaptation tech-
nique by monitoring speedup convergence at
run-time per selected time slots and using hard-
ware counters to analyze system or program
behavior. We use this technique in our Con-
tinuous Collective Compilation framework that
continuously reuses the collected optimization
knowledge from multiple users to speed up
the search for the best optimizations for differ-
ent constraints (performance, power, code size)
and continuously improve compiler optimiza-
tion heuristic using machine learning and statis-
tical techniques [2, 8]. The same technique will
also be used to enable program self-adaptation
at fine-grain level for multi-ISA platforms such
as parallel heterogeneous and reconfigurable
systems (CPU/GPU architectures, CELL-like
architectures, specialized accelerators, etc), and
for varying run-time program or system behav-
ior.
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