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ABSTRACT

Efficient implementation of DSP applications is critical for
many embedded systems. Optimising C compilers for em-
bedded processors largely focus on code generation and in-
struction scheduling which, with their growing maturity,
are providing diminishing returns. This paper empirically
evaluates another approach, namely source-level transforma-
tions and the probabilistic feedback-driven search for “good”
transformation sequences within a large optimisation space.
This novel approach combines two selection methods: one
based on exploring the optimisation space, the other focused
on localised search of good areas. This technique was ap-
plied to the UTDSP benchmark suite on two digital signal
and multimedia processors (Analog Devices TigerSHARC
TS-101, Philips TriMedia TM-1100) and an embedded pro-
cessor derived from a popular general-purpose processor ar-
chitecture (Intel Celeron 400). On average, our approach
gave a factor of 1.71 times improvement across all plat-
forms equivalent to an average 41% reduction in execution
time, outperforming existing approaches. In certain cases a
speedup of up to =~ 7 was found for individual benchmarks.

1. INTRODUCTION

High performance and short time to market are two of the
major factors in embedded systems design. We want the
end product to deliver the best performance for a given cost
and we want this solution delivered as quickly as possible.
In the past digital signal processing and media processing
relied on hand-coded assembler programming of specialised
processors to deliver this performance. However, as the cost
of developing an embedded system becomes dominated by
algorithm and software development, the use of high-level
programming as a means of reducing time to market is now
commonplace.

High-level programming in languages such as C, however,
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can lead to less efficient implementations when compared
to hand-coded approaches [23]. Therefore, there has been
a large amount of research interest in improving the perfor-
mance of optimising compilers for embedded systems, e.g.
[16]. Such work largely focuses on improving back-end, ar-
chitecture specific compiler phases such as code generation,
register allocation and scheduling. However, the investment
in ever more sophisticated back-end algorithms produces di-
minishing returns [8].

Given that an embedded system typically runs just one pro-
gram for its lifetime, we can afford much longer compilation
times (e.g. in the order of several hours) than in general-
purpose computing. In particular, feedback directed or iter-
ative approaches where multiple compiler optimisations are
tried and the best selected has been an area of recent in-
terest [4, 18]. However, these techniques still give relatively
small improvements as they effectively restrict themselves
to trying different back-end optimisations.

In this paper we consider an entirely distinct approach, name-
ly using source-level transformations for embedded systems.
Such an approach is by definition highly portable from one
processor to another and is entirely complementary to the
efforts of the manufacturers back-end optimisations. In fact,
we show that it allows vendors to put less effort into their
compiler reducing the time to market of their product, while
giving higher performance (see section 5.3.3).

While high-level approaches can deliver good performance,
it is extremely difficult to predict what the best transforma-
tion should be. It depends both on the underlying processor
architecture and the native compiler. Small changes in the
program, a new release of the native compiler or the next
generation processor will all impact on the transformation
selection. Typically, high level restructures have a static
simplified model [3] with which to guide transformation se-
lection. It has been shown [5, 9], however, that the optimi-
sation space is highly non-linear and that such completely
static approaches are doomed to failure.

In this paper we propose a new approach to high-level trans-
formation — namely probabilistic optimisation. Essentially,
we use stochastic methods to select the high-level transfor-
mations directed by execution time feedback where we trade
off optimisation space coverage against searching in known



(a) Original implementation

void lmsfir(float input[], float output[],
float expected[], float coefficient[], float gain)
{

int i;

float sum,terml,error,adapted,old_adapted;

output[0] = sum;

error = (expected[0] - sum) * gain;

for (i = 0; i < NTAPS-1; ++i) {
coefficient[i] += input[i] * error;

coefficient [NTAPS-1] = coefficient [NTAPS-2] +
input [NTAPS-1] * error;

(b) TS-101 implementation

sum = 0.0;
for (i = 0; i < NTAPS; ++i) { <« Loop totally unrolled < Lowered to DO-WHILE loop*
sum += input[i] * coefficient[i]; < Array references dismantled < Pseudo 3-address code

< Loop totally unrolled < Loop totally unrolled
<« Array references dismantled <+ Pseudo 3-address code

(¢) TriMedia implementation

+ New temps. introduced

<+ Linear pointer-based
array traversal

<+ Linear pointer-based
array traversal

* See figure 2 for the specific code of this loop.

Figure 1: Differences between the original Imsfir implementation (a), and implementations for the Tiger-

SHARC (b) and TriMedia (c) processors

good regions. Using such an approach we achieve remark-
able performance improvements - on average a 1.71 speedup
across three machines. We demonstrate that our approach
can automatically port to any new processor and extract
high levels of performance, unachievable by traditional tech-
niques, with no additional native compiler effort.

The paper is organised as follows. Section 2 provides a
motivating example demonstrating the need for searching
high level transformations. Section 3 describes the transfor-
mation space considered and is followed in section 4 by an
overview of the search techniques used. This is followed in
section 5 by an empirical evaluation of our approach. Sec-
tion 6 surveys related work and is followed by some conclud-
ing remarks in section 7.

2. MOTIVATION & EXAMPLE

High-level transformations are a portable, yet highly effec-
tive way to improve performance by enabling the native
compiler to produce efficient code. Deriving efficient pro-
gram transformation sequences, however, is a complex task.
For all but the most basic programs, the interaction be-
tween the source-to-source transformation, the native com-
piler and its built-in optimisations and the underlying tar-
get architecture cannot be easily analysed and exploited [3].
Furthermore, programmers frequently apply a series of pro-
gram transformations to the program based on their expert
knowledge and experience with a specific processor and its
compiler. However, with each new generation of the proces-
sor or even release of a new compiler version their knowledge
becomes outdated. Furthermore, new processors and their
frequently immature compilers are a challenge for any pro-
gram developer aiming at high performance.

As an example, consider the program excerpt in figure 1(a).
The Imsfir function is part of the UTDSP [15] LMSFIR
benchmark. It computes a single point of an N-tap adaptive
finite impulse response (FIR) filter applied to a set of input
samples. The first of the two for loops iterates over the in-
put and coefficient vectors and performs repeated multiply-
accumulate (MAC) operations. The second loop updates

data = input; coef = coefficient; sum = 0.0F;
i=0;
do

float *suif_tmp, *suif_tmpO;
suif_tmp = data;

data = data + 1;

terml = *suif_tmp;
suif_tmpO = coef;

coef = coef + 1;

term2 = *suif_tmpO;

sum = sum + terml * term2;

i=1i+1;
} while ('(8 <= i));

Figure 2: First loop of example 1(a) optimised for
the TriMedia processor

the filter coefficient for the next run of this filter function.

In figure 1(b) the main differences due to transformations
in an optimised TigerSHARC implementation are listed.
While the routine has not changed semantically, it outper-
forms the routine in figure 1(a) by a factor of 1.75 on the
TigerSHARC TS-101 processor. In this transformed ver-
sion of the program, both loops have been flattened and the
array references been dismantled into explicit base address
plus offset computations.

On the TriMedia, however, different transformations pro-
duce the best performing Imsfir implementation (see figure
1(c)). Here the speedup of 1.2 is achieved by converting the
first for loop into a do-while loop and flattening the second.
All array references have been converted to pointers and an
almost 3-address code produces the best result. The first
loop of example 1(a) in its optimised form for the TriMedia
is shown in figure 2.

This short example demonstrates how difficult it is to pre-
dict the best high-level transformation for a new platform.
Feedback-directed compilers interleave transformation and
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profiled execution stages to actively search for good transfor-
mation sequences. Portable, optimising compilers, however,
must be able to search a potentially huge transformation
space in order to find a successful sequence of transforma-
tions for a particular program and a particular architecture.
In this paper we propose a probabilistic search algorithm
that is able to examine a small fraction of the optimisation
space and still find significant performance improvements.

3. OPTIMISATION SPACE

Transforming or rewriting a program at source level has an
impact on performance. To illustrate this, consider each
of the UTDSP benchmarks described in figure 5 which are
supplied in up to four distinct versions. Firstly each is
available in either an array or pointer form. In addition,
each of these may also be available in source-level software
pipelined forms. Although these versions are four indepen-
dent sources, each version can readily be derived from the
other by pointer conversion/recovery [17, 8] or source-level
software-pipelining [20]. Figure 4 shows the average exe-
cution time of each version across the benchmarks on each
processor. On the TigerSHARC the clean array version gives
the best average performance while the TriMedia prefers
the pointer based version. In this paper, in order to com-
pare the effect of native compiler on system performance,
we consider two compilers, GCC and ICC, for the Celeron.
Both compilers marginally prefer the array based code over
pointer based versions. In most cases, with the notable ex-
ception of the TriMedia, the software pipelined versions of
the program perform poorly. From this set of data, we can
conclude that source-level transformations will affect perfor-
mance and that this will depend on the processor, program
and possibly the underlying compiler.

Due to the variation in performance of the four different
versions, all speedups in this paper are with respect to the
best performing original code. For example, in the case of
the TigerSHARC this is normally the array based original
code while on the TriMedia it is usually the pointer version.

Selecting the best overall high-level transformation normally
consists of selecting a sequence of smaller transformations
which are applied to part or all of the program. Given that
certain transformations may be parameterised', and that

!For example, loop unrolling is parameterised by the unroll
factor.
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Figure 4: Relative speedup or slowdown for different
coding styles per processor. The data is normalised
to the performance of the baseline array code

different combinations may be considered, selecting the best
transformation is effectively an optimisation problem over
the space of all possible transformations.

In the remainder of this section, we describe the source level
transformation considered and novel mechanism to encode
all transformations as binary decisions, allowing existing op-
timisation techniques to be used.

3.1 Transformations

In this paper we consider 81 high level transformations, ap-
plicable to C programs and available within an extended
SUIF [11] based framework. For convenience we have clas-
sified them as shown in figure 3. 13 are in effect analy-
sis phases that mark the IR enabling later transformations
which actually modify the source. These transformations
can be classified into three broad groups; those aimed at
modifying the program’s control-flow, those that modify the
actual computation performed and those focused on data
which is further subdivided into actual layout and access.
These broad categories are further refined as shown in fig-
ure 3.



All categories contain lowering transformations which trans-
late a complex structure into a smaller one, i.e. unpacking
a structure into its sub-components.

The control-flow transformations are aimed either at loop
transformations or more general control-flow changes. The
data access transformations include value propagation, mod-
ifying memory references and data type conversion. Fi-
nally, the computation based transformations include partial
evaluation, redundancy elimination and code simplification.
This is by no means a definitive transformation taxonomy,
but provides an overview of the options available.

3.2 Encoding Transfor mations

One of the main difficulties in selecting the best transfor-
mation sequence is that many transformations are position
dependent, i.e. only applied to a part of the program. Un-
like global optimisations, we have to specify the location
of the transformation. Furthermore, these transformations
may be parameterised. This leads to two problems. Firstly,
the optimisation space now increases in size and, secondly,
it becomes asymmetric in description. This means that we
cannot search the space in a uniform manner.

To overcome this we have devised a simple method to make
the treatment of parameterised location specific transforma-
tions indistinguishable from the yes/no decision of global op-
timisations such as constant propagation. This is achieved
by simply enumerating all possible parameters and all loca-
tions. For example consider the case of loop unrolling. If
there are three loops each of which may be unrolled up to
eight times then there are 24 possible loop unroll transforma-
tions to consider. At the beginning of each optimisation we
determine the total number of transformations needed based
on the program size and the parameter space selected. As
the number of loops may change over time due to, say, fu-
sion or distribution, then the number of transformations to
select from changes dynamically. In the case of the focused
search described below, we therefore need to track an in-
dividual transformation’s contribution to success where the
number of transformations changes over time.

4. SEARCH

For all but very small sets of transformations it is impos-
sible to perform an exhaustive search of all possible trans-
formation sequences up to a given short length and of all
parameters. Any practical search algorithm must therefore
find a “good” rather than an optimal solution in acceptable
time.

In figure 6 an overview of an iterative compilation and opti-
misation framework is given. C code enters the system and
is translated into an intermediate representation on which
all transformations operate. After finishing the transforma-
tion process, the IR is translated back into C code and com-
piled into an executable by the particular machine’s native
C compiler making use of its most aggressive optimisation
setting.

We have implemented this transformation toolkit and use
the Stanford SUIF compiler [11] to provide us with a C
front-end, a code generator and a rich number of already
implemented transformations.

Program Description

fft_1024 Radix-2, in-place, decimation-in-time
ffit_256 Fast Fourier Transform (FFT)

g::zzzﬁé} Finite Impulse Response (FIR) filter
;;:_;Li;‘l Infinite Impulse Response (IIR) filter

latnrm_32_64

Normalised lattice filter
latnrm_8_1

Imsfir_32_64 Least-mean-squared (LMS) adaptive
Imsfir_8_1 FIR filter

mult-10-10 Matrix multiplication

mult_ 4.4

GT721_encoder ITU ADPCM speech transcoder

G721_decoder ITU ADPCM speech decoder

V32.modem encod. | V.32 modem encoder

V32.modem decod. | V.32 modem encoder

compress Image compression using Discrete

Cosine Transform

edge_detect Edge detection using 2D

convolution and Sobel operators

histogram Image enhancement using

histogram equalisation

Figure 5: UTDSP benchmarks

4.1 Optimisation Algorithm

Central to the iterative transformation framework is an op-
timisation algorithm hosted by the optimisation engine in
figure 6. The huge size of the optimisation space and its
complexity make it necessary to find a balanced trade-off be-
tween space exploration and focused search. For the bench-
marks considered here the size of the space is approximately
10°. To find good points, whilst keeping the number of sam-
ple points (and thus the number of program runs) within
reasonable limits, we employ probabilistic algorithms.

Although the random based search of the optimisation space
leads to significant performance improvement [9], it is by
definition unable to direct efforts and search for an optimal
point. If a transformation or sub-sequence is found to con-
sistently perform well or poorly or indeed have no effect,
we would like to use this information to guide the search.
However, there is a natural tension between avoiding hard-
wiring of biased heuristics and cost-effective search. What
is needed is a technique that combines an unbiased sam-
pling of the transformation space and with feedback focused
attention on good areas.

In order to overcome this dilemma of space exploration vs.
focused search, we have combined two simple, yet power-
ful algorithms representing each of the two domains. These
two algorithms compete with each other and within a final
merge stage the best of the two individual solutions is cho-
sen. To facilitate a broad and non-biased space coverage we
have chosen a simple random search as our space exploration
algorithm. The focused search is represented by a machine
learning algorithm based on a modified Population-based In-
cremental Learning (PBIL) [1] approach. Both algorithms
can be considered as two extreme cases of a continuum where
the learning rate is LR = 1 for the PBIL inspired technique
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Figure 6: Overview of the iterative compilation/optimisation framework

and LR = 0 for random search. In particular, in a competi-
tive learning network the activation of the output units are
computed and the weights adjusted according to the rules
given by the following two equations [1]:

output; = Z wij X input; (1)
J
Aw;ij = LR X (input; — w;j) (2)

A learning rate LR = 0 leads to constant weights which
are not adjusted during the search. On the other hand,
a learning rate LR = 1 enforces strong adjustment to the
individual weights over changing input. In the two following
two paragraphs we discuss both algorithms in detail.

4.2 Space Exploration

Random search assigns a constant uniform probability dis-
tribution to the set of transformations and choses the next
transformation solely based on a value generated by a pseudo-
random number generator. In the case of parameterised
transformations, we equally divide the assigned probability
across all enumerated versions. For example if each trans-
formation has a 0.1 probability of being selected but there
are 50 loop unrolling options, then each of them is assigned
a probability of 0.002.

Formally, the learning rate is LR = 0 for random search as
no information is carried across iterations of the algorithm
and from equation 2 it follows that Aw;; = 0.

Both the transformation and the length of the transforma-
tion sequence (up to some upper limit) are determined by a
random process. The random search algorithm does not use
the effectiveness of any transformations to direct its search.
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Figure 7: Speedup due to high-level transformation
over the most aggressive native compiler optimisa-

tion for the TigerSHARC.

4.3 Focused Search

PBIL is a stochastic search technique that aims at integrat-
ing genetic algorithms and competitive learning. It increases
the probability of an option being selected whenever a pos-
itive instance using that option is encountered.

In our stochastic optimisation algorithm, transformations
have an associated selection probability, but unlike the space
exploring random search algorithm, probabilities can change
over time and their distribution does not need to be uniform,
i.e. LR # 0. In fact, we have chosen LR = 1 to emphasise
its fast convergence on encountered performance enhancing
transformations. The original PBIL algorithm considers bi-
nary encodings of parameters and generates a population of
solutions based on a fixed-length probability vector, which
had to be modified for our purposes.



Starting with a uniform probability distribution, individual
sample points (i.e. transformation sequences) are chosen
and evaluated by executing the corresponding program. The
selection probabilities of the individual transformations are
updated based on the success (i.e. execution time) of the se-
quence as a whole. Transformations contributing to better
performance are rewarded while those resulting in perfor-
mance losses are penalised. Thus, future sample points are
more likely to include previously successful transformations
more frequently and search their neighbourhood more inten-
sively.

Standard PBIL allows for random mutation within the prob-
ability vector, but we discard this as we do not wish to incur
the overhead. Finally we do not generate a population based
on a probability vector, but just one candidate. Depending
on its success we update the probability vector accordingly.

The high learning rate, lack of mutation and a single candi-
date per generation means that we strongly focus the search
based on feedback results.

5. EXPERIMENTAL EVALUATION

In this section we present and analyse the empirical results
we gained with our tool. All results are found after running
the search algorithm for 500 evaluations corresponding two
about 2-6 hours search.

5.1 Processorsand Compilers

We have evaluated our adaptive optimisation scheme against
three different processors representing different aspects of
the embedded computing domain. Among the three embed-
ded processors are a high-performance floating-point digital
signal processor (Analog Devices TigerSHARC TS-101), a
multimedia processor (Philips TriMedia TM-1100) and an
embedded processor derived from a popular general-purpose
processor architecture (Intel Celeron 400).

As native compilers we used Analog Devices’ VisualDSP++
3.5 for the TigerSHARC v7.0.1.5, Philips’ TriMedia v1.1ly
Software Development Environment (SDE v5.3.4) for the
TriMedia, and both Intel’s ICC 8.0 and the GNU GCC 3.3.3
for the Celeron. The highest optimisation settings were used
on the native compilers and execution times were measured
using hardware cycle counters.

The optimisation methodology and transformation toolkit
are highly portable and have been ported within few hours
to eight distinct embedded processor architectures. How-
ever, as the time of writing our experimental data for these
additional platforms is not yet available.

5.2 Benchmarks

We have chosen the UT'DSP [15, 19] benchmark suite to eval-
uate our technique. This set of benchmarks contains com-
pute-intensive DSP kernels as well as applications composed
of more complex algorithms and data structures. The details
are shown in figure 5. Many of the programs are available
in up to four coding styles (explicit vs pointer-based array
references, plain vs source-level software pipelined). Some of
the benchmarks are excluded from this study. This is due to
the incompatibility between the differing interpretations of
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Figure 8: Speedup due to high-level transformation
over the most aggressive native compiler optimisa-
tion for the TriMedia.

acceptable C syntax/semantic between SUIF and the native
compilers. The TigerSHARC in particular is much stricter
than SUIF in terms of the C accepted. Also some of the
benchmarks are focused on bit manipulation which causes
problems due to conflicting endianness. This issue has been
fixed recently, however, data is not yet available.

5.3 Reaults

As stated in section 4, all speedups are with respect to the
best performing original program giving a true evaluation
of our approach. Thus, the best original execution time
of the four possible versions of each program was selected
for speedup comparison using the highest optimisation level
selected on the native compiler.

5.3.1 Platform Based Evaluation

Figures 7, 9, 10 and 8 show the performance improvements
achieved by our approach across processors and benchmarks.
All the platforms benefited from the iterative search. The
TigerSHARC had an average speedup of 1.73, the TriMedia
1.43, the Celeron with GCC 1.54 and with ICC 2.14 giving
an overall average of 1.71. This overall figure demonstrates
the importance of high-level optimisation. In other words,
using a platform independent approach we are able to reduce
execution time on average by 41%, outperforming any other
approach.

Examining the TigerSHARC results (see figure 7) more close-
ly we see there is much variation. Surprisingly, the matrix
multiplication routines can be improved by almost a factor
of 7 by completely flattening the code. As this is such a well
known routine, one would have thought that the baseline
compiler would do well here.

The iterative scheme performs less well on the very small
data sizes of FIR and IIR, unlike the other processors. It also
is unable to improve the performance of the G721 encoder,
a problem shared by all of the processors.

A different picture emerges when considering the Celeron
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Figure 9: Speedup due to high-level transformation
over most aggressive native compiler optimisation
for the Celeron/GCC.

processor with GCC (see figure 9) where the speedups are
less variable. In direct contrast to the TigerSHARC, large
performance gains are achieved on the small data sized IIR
program. Good results are also found for the compression
and edge detection applications. Like the TigerSHARC, lit-
tle performance was gained on the G721 encoder.

The largest performance gains were achieved with the ICC
compiler on the Celeron. This in itself is a surprising result
given that it is the most mature compiler here and there-
fore should have proved difficult to improve upon. Like the
TigerSHARC it performs well on the large matrix multipli-
cation and the small FFT and poorly on the G721 encoder.
However, it performs well on the small IIR like GCC and
shares similar performance gains on edge detection and V.32
encoder. We will compare the two compilers GCC and ICC
for the Celeron in more detail below (see section 5.3.3).

The TriMedia has the lowest average speedup of 1.43 and
like the TigerSHARC has an uneven distribution of results
with the large FFT achieving a speedup of almost 5. Once
again it performs poorly on the G721 encoder, but unlike
other platforms it performs poorly on the V.32 decoder and
compress benchmarks.

5.3.2 Benchmark Orientated Evaluation

If we examine the average performance improvement across
the benchmarks as shown in figure 11, we see that only three
of them fail to achieve an average speedup of 1.25. LATNRM
benefits from loop unrolling. However, due to cross-iteration
dependences the native compilers instruction scheduler can-
not take full advantage of the enlarged loop body. LMSFIR
suffers from a coding style that introduces frequent condi-
tional branches to the innermost loop. Similarly, G721 is
limited in its transformation potential by many conditional
branches between tiny basic blocks.

Surprisingly in four out of six cases high-level iterative search
is able to speed up programs to a greater extent for small
rather than large data sizes. This is counterintuitive as many
of the restructuring transformations only have any notice-
able effect when dealing with large amounts of data and
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Figure 10: Speedup due to high-level transformation
over most aggressive native compiler optimisation
for the Celeron/ICC.
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Figure 11: Program speedup averaged across all
platforms over the most aggressive native compiler
optimisation.

computation. Examining the output code, it seems that in
several cases the iterative search has completely unrolled or
flattened certain sections of code turning loops into large
basic blocks and act as an enabler of baseline compiler opti-
misation. This is the reason for the large speedup of matrix
multiplication on the TigerSHARC.

533 GCCvsICC

Using two compilers on one platform gives an insight in to
their effect on performance. As expected, overall the ICC
compiler outperforms GCC and is approximately 1.22 times
faster on average. However, on applying high-level transfor-
mations on top of GCC, we see an improvement on average
of 1.54, outperforming ICC on its own. This means that an
automatic platform-independent approach can use simple
compilers as a baseline and outperform hand-crafted opti-
misers based on many person years work. Furthermore, it
allows vendors to put less effort into their compiler reduc-
ing the time to market of their product, while giving higher
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Celeron. Results are normalised to GCC perfor-
mance before transformation.

performance.

The diagram also shows that applying transformations to
ICC gives a speedup of more than 2.5 relative to GCC alone.
This also shows that a platform-independent approach can
also port and scale with improved baseline improvements
and is a complementary approach to vendor improvements.

5.4 Transformations

Overall, loop transformations have been identified as the
most beneficial class of transformations in our framework.
This category (cf. figure 3) is followed by value propaga-
tion transformations and partial evaluation. The differences
between the remaining classes are too small to derive any
significant metrics from them.

Across all platforms and benchmarks, the focused search
phase of the optimisation algorithm finds the best sequence
65% of the time with an average effective transformation se-
quence length of 4.1. For example, in compress on the Tri-
Media the best sequence of transformations was hoist loop
invariants, optimise function parameter passing, globalise
constants, scalarisation and flatten the main loop.

The remaining 35% of the time the best transformation se-
quence was found by the random phase where the absolute
length was on average 40.1. This result looks surprising at
first. No high-level restructuring compiler research has sug-
gested that such sequence lengths are beneficial and they
obviously contrast with the focused search results. How-
ever, as we are randomly selecting sequences between 1 and
80, then an average around 40 is to be expected. Further-
more, on examination it can be seen that there are many
transformations included which do have any impact on the
code. These junk transformation sub-sequences frequently
contain repeated transformations or ones which have no ef-
fect on that particular program. Hence, the effective trans-
formations sequence length is much shorter. This means
that while long sequences may be beneficial, it is sufficient
for future work to consider short but effective sequences, less
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A - Break up large expression trees, B - Value propagation, C - Hoist-
ing of loop invariants, D - Loop normalisation, E - Loop unrolling,
F - Mark constant variables, G - Dismantle array instructions, H -
Eliminating copies.

X-axis: Enumerated transformations

Y-axis: Likelihood of transformation being selected

Figure 13: Probability of transformation being suc-
cessful across all programs and processors.

than ten in length.

It is interesting to note that while the focused search finds
the best optimisation 65% of the time, it achieves an av-
erage performance gain of 1.57. Random space exploration
finds the best solution less often, but achieves an average
speedup of 2.00 in these cases, justifying the choice of using
two approaches to searching the space.

5.4.1 Transformation Sequences

Our experimental data confirms that it is hard to estab-
lish generally successful sequence orderings as they vary
drastically. As a general rule, large increases in perfor-
mance appear to come from one of two things — either loop
unrolling or a large combination of other transformations
(> 5). However, there appears to be little correlation be-
tween the length of the transformation sequence and the
performance achieved.

5.5 Distribution

If we examine the probability distribution of the useful trans-
formations across all processors and programs, there are
eight transformations or peaks labelled A-H in figure 13.
At first glance there seems to be much commonality across
the processors. Loop unrolling (E) is by far the most suc-
cessful transformation. Now, although it is well known to
improve performance, it is surprising that it is so successful
here as each of the native compilers applies unrolling inter-
nally®. This means that the heuristic employed by the na-
tive compiler is in fact poor. Propagating known values (B)
and loop hoisting (C) are also useful transformations again
surprising as a native compiler should perform this. Less
obviously, breaking up expression trees (A) so that they can

2As we use the highest optimisation level available for each
native compiler.
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Figure 14: Highlighted differences in overall effec-
tiveness of transformations.

be effectively handled by the code generator proved useful.
Finally changing arrays into pointer traversal (G) is useful
for machines with separate address generation units while
eliminating copies (H) reduces memory bandwidth.

If we focus now just on the TriMedia and TigerSHARC
whose speedup profiles are similar, then we see that there
are also differences among the processors. Figure 14 shows
the transformation ordered by overall effectiveness. At three
points A, B and C we see marked differences in the useful-
ness of transformations. Data layout transformation (A) re-
arranges the order and location of data declarations enabling
the user more efficient addressing modes. This transforma-
tion is important for the TriMedia as this processor/compiler
pair seems to be very sensitive to memory layout changes.
Control flow simplification (B) eliminates redundant con-
ditional branches and loops that might have been intro-
duced by previous passes. Unlike the TigerSHARC with its
dynamic branch predictor, unnecessary branching is very
expensive for the TriMedia. Array reference dismantling
makes the address computation of an array reference ex-
plicit and its importance to the TriMedia can be attributed
to its compiler’s relative immaturity.

5.6 Efficiency

Although we evaluate each benchmark 500 times in 2-6 hours
this is acceptable in an embedded context where the cost is
amortised over multiple runs. In fact on average, the ma-
jority of the performance improvement occurs within less
than 200 runs. Future work which exploits program struc-
ture to guide transformation selection should further im-
prove on this. Other possibilities include the consideration
other learning rates different from 0 and 1.

6. RELATED WORK

6.1 Source-level program transfor mation
One major difficulty in the use of high-level transformations
is that the preferred application language for embedded sys-

tems is C, which is not very well suited to optimisations.
Extensive usage of pointer arithmetic [17, 23] prevents the
application of well developed array-based data-flow analy-
ses and transformations. Previous work [8], however, has
shown that many pointer-based memory references can be
eliminated and converted to explicit array references amend-
able to advanced analyses and transformations.

There has been limited work in the evaluation of high-level
transformations on embedded systems performance. In [2]
the trade-off between code size and execution time of loop
unrolling has been investigated and in [12] the impact of
tiling on power consumption has been evaluated. The im-
pact of several high-level transformations on the DSPstone
[23] kernel benchmarks is empirically evaluated on four dif-
ferent embedded processors in [8].

6.2 Feedback-directed program transforma-
tion

Iterative or adaptive compilation is a more recent develop-
ment and has led to a number of publications in the past few
years. Early work in this field [2, 13] investigate the itera-
tive search for good parameters to loop unrolling and tiling.
In [9], a random search strategy for numerical Fortran algo-
rithms is evaluated, and [7] proposes neural network based
search and optimisation, however, without giving empirical
results. A partially user-assisted approach to select optimi-
sation sequences is VISTA [14]. It combines user guides and
performance information with a genetic algorithm to select
local and global optimisation sequences. ADAPT [22] is a
compiler-supported high-level adaptive compilation system.
While it is very flexible and can be re-targeted to new plat-
forms, it requires the compiler writer to specify heuristics for
applying optimisations dynamically at runtime. Code opti-
misation at runtime, however, is usually not suitable in an
embedded systems context. Other authors [18, 10, 4] have
explored ways to search program- or domain-specific com-
mand line parameters to enable and disable specific options
of various optimising compilers. Some of these approaches
[18, 4] make use of fractional factorial designs for experiment
planning.

More recently a broader range of randomised search algo-
rithms have found wider attention among compiler research-
ers. In particular, the works of Cooper et al. [6] and Tri-
antafyllis et al. [21] are relevant in the context of this paper.
[6] is probably most similar to our work and has its main
focus on evaluating the effectiveness of various optimisation
algorithms for the search of low-level compiler phase orders
within a platform-specific native compiler. In [21] an algo-
rithm for compiler optimisation space exploration in EPIC-
type machines is presented. Similar to our approach, dif-
ferent optimisation configurations are applied to each code
segment. The main differences to our work, however, are
in the level, kind and number of transformations considered
and the approach to execution time estimation. Our ap-
proach not only deals with a much larger optimisation space
(16 (in [6]) or 15 (in [21]) vs 81 transformations), but also
considers additional dimensions introduced by transforma-
tion parameters and outperforms their technique. By using
highly portable source-to-source code and data restructur-
ing techniques our transformation toolkit can already be em-
ployed successfully during early development stages of a na-



tive compiler and will continue to deliver performance ben-
efits as this compiler matures. In contrast to [6] we do not
estimate the actual execution time by counting instructions
based on an abstract RISC machine, but employ real em-
bedded hardware to measure cycle accurate execution time.
This alleviates the inevitable difficulty (as shown in [21]) in
predicting and estimating the possible performance impact
on the highly specialised and often idiosyncratic architec-
tures of most embedded processors. In contrast to [21] we
do not rely on compiler writer supplied predictive heuristics
and configuration pruning to handle large search spaces, but
leave this decision to the employed search algorithm.

7. CONCLUSION

In this paper we have described a probabilistic optimisa-
tion algorithm for finding good source-level transformation
sequences for typical embedded programs written in C. We
have demonstrated that source-to-source transformations are
not only highly portable, but provide a much larger scope
for performance improvements than any other low-level tech-
nique. Two competing search strategies provide a good bal-
ance between optimisation space exploration and focused
search in the neighbourhood of already identified good can-
didates. We have integrated both parameter-less global and
parameterised local transformations in a unified optimisa-
tion framework that can efficiently operate on a huge opti-
misation space spanned by more than 80 transformations.

The empirical evaluation of our optimisation toolkit based
on three real embedded architectures and kernels and appli-
cations from the UTDSP benchmark suite has successfully
demonstrated that our approach is able to outperform any
other existing approach and gives an average speedup of
1.71 across platforms. Future work will investigate the in-
tegration of machine learning techniques based on program
features into our optimisation algorithm.
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