
MILEPOST GCC: machine learning based research compiler

Grigori Fursin,
Cupertino Miranda,

Olivier Temam
INRIA Saclay, France

Mircea Namolaru,
Elad Yom-Tov,

Ayal Zaks,
Bilha Mendelson
IBM Haifa, Israel

Edwin Bonilla,
John Thomson,
Hugh Leather,

Chris Williams,
Michael O’Boyle

University of Edinburgh, UK

Phil Barnard, Elton Ashton
ARC International, UK

Eric Courtois, Francois Bodin
CAPS Enterprise, France

Contact: grigori.fursin@inria.fr

Abstract

Tuning hardwired compiler optimizations for rapidly
evolving hardware makes porting an optimizing com-
piler for each new platform extremely challenging. Our
radical approach is to develop a modular, extensible,
self-optimizing compiler that automatically learns the
best optimization heuristics based on the behavior of the
platform. In this paper we describe MILEPOST GCC,
a machine-learning-based compiler that automatically
adjusts its optimization heuristics to improve the exe-
cution time, code size, or compilation time of specific
programs on different architectures. Our preliminary
experimental results show that it is possible to consider-
ably reduce execution time of the MiBench benchmark
suite on a range of platforms entirely automatically.

1 Introduction

Current architectures and compilers continue to evolve
bringing higher performance, lower power and smaller
size while attempting to keep time to market as short as
possible. Typical systems may now have multiple het-
erogeneous reconfigurable cores and a great number of
compiler optimizations available, making manual com-
piler tuning increasingly infeasible. Furthermore, static
compilers often fail to produce high-quality code due to
a simplistic model of the underlying hardware.

The difficulty of achieving portable compiler perfor-
mance has led to iterative compilation [10, 15, 14, 25,

32, 18, 29, 23, 24, 17, 19, 21] being proposed as a
means of overcoming the fundamental problem of static
modeling. The compiler’s static model is replaced by
a search of the space of compilation strategies to find
the one which, when executed, best improves the pro-
gram. Little or no knowledge of the current platform is
needed so programs can be adapted to different archi-
tectures. It is currently used in library generators and
by some existing adaptive tools [35, 27, 30, 8, 1, 3].
However it is largely limited to searching for combina-
tions of global compiler optimization flags and tweaking
a few fine-grain transformations within relatively nar-
row search spaces. The main barrier to its wider use is
the currently excessive compilation and execution time
needed in order to optimize each program. This prevents
its wider adoption in general purpose compilers.

Our approach is to use machine learning which has the
potential to reuse knowledge across iterative compila-
tion runs, gaining the benefits of iterative compilation
while reducing the number of executions needed.

The MILEPOST project’s [4] objective is to develop
compiler technology that can automatically learn how to
best optimize programs for configurable heterogeneous
embedded processors using machine learning. It aims to
dramatically reduce the time to market of configurable
systems. Rather than developing a specialised compiler
by hand for each configuration, MILEPOST aims to
produce optimizing compilers automatically.

A key goal of the project is to make machine learn-
ing based compilation a realistic technology for general-

1

purpose compilation. Current approaches [28, 31, 9, 13]
are highly preliminary; limited to global compiler flags
or simple transformations considered in isolation. GCC
was selected as the compiler infrastructure for MILE-
POST as it is currently the most stable and robust open-
source compiler. It supports multiple architectures and
has multiple aggressive optimizations making it a natu-
ral vehicle for our research. In addition, each new ver-
sion usually features new transformations demonstrat-
ing the need for a system to automatically re-tune its
optimization heuristics.

In this paper we present early experimental results
showing that it is possible to improve the performance
of the well-known MiBench [22] benchmark suite on a
range of platforms including x86 and IA64. We ported
our tools to the new ARC GCC 4.2.1 that targets ARC
International’s configurable core family. Using MILE-
POST GCC, after a few weeks training, we were able to
learn a model that automatically improves the execution
time of MiBench benchmark by 11% demonstrating the
use of our machine learning based compiler.

This paper is organized as follows: the next section de-
scribes the overall MILEPOST framework and is, it-
self, followed by a section detailing our implementation
of the Interactive Compilation Interface for GCC that
enables dynamic manipulation of optimization passes.
Section 4 describes machine learning techniques used
to predict good optimization passes for programs us-
ing static program features and optimization knowledge
reuse. Section 5 provides experimental results and is
followed by concluding remarks.

2 MILEPOST Framework

The MILEPOST project uses a number of components,
at the heart of which is the machine learning enabled
MILEPOST GCC, shown in Figure 1. MILEPOST
GCC currently proceeds in two distinct phases, in ac-
cordance with typical machine learning practice: train-
ing and deployment.

Training During the training phase we need to gather
information about the structure of programs and record
how they behave when compiled under different op-
timization settings. Such information allows machine
learning tools to correlate aspects of program structure,

or features, with optimizations, building a strategy that
predicts a good combination of optimizations.

In order to learn a good strategy, machine learning tools
need a large number of compilations and executions as
training examples. These training examples are gener-
ated by a tool, the Continuous Collective Compilation
Framework[2] (CCC), which evaluates different compi-
lation optimizations, storing execution time, code size
and other metrics in a database. The features of the pro-
gram are extracted from MILEPOST GCC via a plugin
and are also stored in the database. Plugins allow fine
grained control and examination of the compiler, driven
externally through shared libraries.

Deployment Once sufficient training data is gathered,
a model is created using machine learning modeling.
The model is able to predict good optimization strate-
gies for a given set of program features and is built as
a plugin so that it can be re-inserted into MILEPOST
GCC. On encountering a new program the plugin deter-
mines the program’s features, passing them to the model
which determines the optimizations to be applied.

Framework In this paper we use a new version of the
Interactive Compilation Interface (ICI) for GCC which
controls the internal optimization decisions and their pa-
rameters using external plugins. It now allows the com-
plete substitution of default internal optimization heuris-
tics as well as the order of transformations.

We use the Continuous Collective Compilation Frame-
work [2] to produce a training set for machine learn-
ing models to learn how to optimize programs for the
best performance, code size, power consumption and
any other objective function needed by the end-user.
This framework allows knowledge of the optimization
space to be reused among different programs, architec-
tures and data sets.

Together with additional routines needed for machine
learning, such as program feature extraction, this forms
the MILEPOST GCC. MILEPOST GCC transforms
the compiler suite into a powerful research tool suitable
for adaptive computing.

The next section describes the new ICI structure and ex-
plains how program features can be extracted for later
machine learning in Section 4.

2

MILEPOST GCC
(with ICI and ML routines)

IC Plugins
 Recording pass

sequences

Extracting static
program features

Program1

ProgramN

…

T
raining

New program

D
eploym

ent

MILEPOST GCC

Extracting static
program features

Selecting “good”
passes

Drivers for
iterative

compilation
and model

training

Continuous Collective
Compilation Framework

CCC

Predicting “good”
passes to improve

exec.time, code size
and comp. time

Figure 1: Framework to automatically tune programs and improve default optimization heuristics using machine
learning techniques, MILEPOST GCC with Interactive Compilation Interface (ICI) and program features extractor,
and Continuous Collective Compilation Framework to train ML model and predict good optimization passes

3 Interactive Compilation Interface

This section describes the Interactive Compilation Inter-
face (ICI). The ICI provides opportunities for external
control and examination of the compiler. Optimization
settings at a fine-grained level, beyond the capabilities
of command line options or pragmas, can be managed
through external shared libraries, leaving the compiler
uncluttered.

The first version of ICI [20] was reactive and required
minimal changes to GCC. It was, however, unable to
modify the order of optimization passes within the com-
piler and so large opportunities for speedup were closed
to it. The new version of ICI expands on the capabil-
ities of its predecessor permitting the pass order to be
modified. This version of ICI is used in the MILE-
POST GCC to automatically learn good sequences of
optimization passes. In replacing default optimization
heuristics, execution time, code size and compilation
time can be improved.

3.1 Internal structure

To avoid the drawbacks of the first version of the ICI, we
designed a new version, as shown in Figure 2. This ver-
sion can now transparently monitor execution of passes
or replace the GCC Controller (Pass Manager), if de-
sired. Passes can be selected by an external plugin
which may choose to drive them in a very different order
to that currently used in GCC, even choosing different
pass orderings for each and every function in program
being compiled. Furthermore, the plugin can provide its
own passes, implemented entirely outside of GCC.

In an additional set of enhancements, a coherent event
and data passing mechanism enables external plugins to
discover the state of the compiler and to be informed as
it changes. At various points in the compilation process
events (IC Event) are raised indicating decisions about
transformations. Auxiliary data (IC Data) is registered
if needed.

Since plugins now extend GCC through external shared
libraries, experiments can be built with no further mod-
ifications to the underlying compiler. Modifications for

3

Interactive
Compilation

Interface

ML drivers
to optimize

programs and
tune compiler
optimization

heuristic

Detect
optimization flags

GCC Controller
(Pass Manager)

IC
Event

Pass N

IC
Event

Pass 1

GCC Data Layer
AST, CFG, CF, etc

IC
Data

IC
Event

ICI

GCC with ICI

...

Detect
optimization flags

GCC Controller
(Pass Manager)

Pass N Pass 1

GCC

GCC Data Layer
AST, CFG, CF, etc

(a) (b)

IC Plugins

High-level scripting
(java, python, etc)

Selecting pass
sequences

Extracting static
program features

<Dynamically linked
shared libraries>

CCC
Continuous Collective

Compilation Framework

...

Figure 2: GCC Interactive Compilation Interface: a) original GCC, b) GCC with ICI and plugins

different analysis, optimization and monitoring scenar-
ios proceed in a tight engineering environment. These
plugins communicate with external drivers and can al-
low both high-level scripting and communication with
machine learning frameworks such as MILEPOST
GCC.

Note that it is not the goal of this project to develop
fully fledged plugin system. Rather, we show the util-
ity of such approaches for iterative compilation and
machine learning in compilers. We may later utilize
GCC plugin systems currently in development, for ex-
ample [7] and [12].

Figure 3 shows some of the modifications needed to en-
able ICI in GCC with an example of a passive plugin
to monitor executed passes. The plugin is invoked by
the new -fici GCC flag or by setting ICI_USE environ-
ment variable to 1 (to enable non-intrusive optimiza-
tions without changes to Makefiles). When GCC detects
these options, it loads a plugin (dynamic library) with a
name specified by ICI_PLUGIN environment variable
and checks for two functions start and stop as shown in
Figure 3a.

The start function of the example plugin registers an
event handler function executed_pass on an IC-Event

called pass_execution.

Figure 3c shows simple modifications in GCC Con-
troller (Pass Manager) to enable monitoring of exe-
cuted passes. When the GCC Controller function exe-
cute_one_pass is invoked, we register an IC-Parameter
called pass_name giving the real name of the executed
pass and trigger an IC-Event pass_execution. This in
turn invokes the plugin function executed_pass where
we can obtain the current name of the compiled function
using ici_get_feature("function_name") and the pass
name using ici_get_parameter("pass_name").

IC-Features provide read only data about the compila-
tion state. IC-Parameters, on the other hand, can be dy-
namically changed by plugins to change the subsequent
behavior of the compiler. Such behavior modification is
demonstrated in the next subsection using an example
with an avoid_gate parameter needed for dynamic pass
manipulation.

Since we use the name field from the GCC pass struc-
ture to identify passes, we have had to ensure that each
pass has a unique name. Previously, some passes have
had no name at all and we suggest that in the future
a good development practice of always having unique
names would be sensible.

4

� ��� � ����	
���	������� �� �������� �� � �� �� � !" ���#$� ���%& '() �! *+ *,�# -#)) �� ��) �. / -*+ *,�# . ! �)0� ��!" ���#$� ��� 1 23 ,4$,567% -� ��) � 8. � ��� 9$�) �$! �� ��) ��% -�� �$��� �� . �� :��% ! ��" ;� *+ *,�# 1 <=>� ?> <% -� ��) � 8. � ��� 9$�) �$! �� ��) ��% -�� �$��)0 . �� :��% ! ��" ;� *+ *,�# 1 <=>� @<% -� ��) � 8. � ��� 9$�) �$! �� ��) ��% -'A BCD
� ��� � E
F���G��HI�J�K
EE�E��L MN O�PQ �RST ��� �:!� UVVW ��� �:!�W ��X�� R> ?� ��Y ?Z[UT ��� �:!� UVVW VVW\��W\��W ��X �R>Y ?]��Y Z[U'() �! Y^Y� P>Y�� @�== �() �!%& � �� � 0���$ �� ;� -� �� � � :��$ �� ;� -W *�� ���� � ��) :\ �0����� �)#�� ���! �� ���� :���% �) ��(�) ��\ ��� �_++ 0���) �!� � W� :��$ �� ;� . �� �� � %�� ��QY>�]Y�> P?YL <] PR�> �� R� R� Ỳ <S a0���$ �� ;� . �� �� � %�� ��QY>� @� ?� Ỳ>Y ?L <@�==� R� Ỳ <S a0 ����� �Ub� b�c �U1� :��$ �� ;� 10���$ �� ;�% -AA� �� �=>� ?> �() �!%& �� �$ ��\ ���� �$�(� �� L <@�==�Y^Y� P> �� R<1dY^Y� P>Y�� @�==% -A BeD

� ��� � K
EE�E��#)) �Y^Y� P>Y�� RY� @�== ��� �:�� � ���$)0�$0��� 0���%& #)) � ���� �� ��f ��\$! :;0 -:�� �\ ��! ��� �)!)$���� �. / -���� �� #)) �\���$���� :� -Q�>Y�=>�> P= . �0���gh\��� .. ij,,% k� �:� �0���gh\��� �% -�� �$ ��\ ���� �$0� �� ;��� ��U\���$���� :� U1 lQ�>Y�=>�> P=% -�� �$�� ��$�(� �� �<�m� ���Q�>Y <% -�� �$:���\ ���� �$0� �� ;��� ��U\���$���� :� U% -�� �n\���$���� :�%��� :���� ��� -�� �� ?YQ �=>Y ?� @� ?� Ỳ>Y ?L <@�==� R� Ỳ <oLm� �� pSL @�==Xq R� ỲSS a�� ���� ���YmY R>L <@�==�Y^Y� P> �� R<S a�� �� PR?YQ �=>Y ?� @� ?� Ỳ>Y ?L <@�==� R� Ỳ <S a' BrD
Figure 3: Some GCC modifications to enable ICI and an example of a plugin to monitor executed passes:
a) IC Framework within GCC, b) IC Plugin to monitor executed passes, c) GCC Controller (pass manager) modifi-
cation

3.2 Dynamic Manipulation of GCC Passes

Previous research shows a great potential to improve
program execution time or reduce code size by carefully
selecting global compiler flags or transformation param-
eters using iterative compilation. The quality of gener-
ated code can also be improved by selecting different
optimization orders as shown in [15, 14, 16, 25]. Our
approach combine the selection of optimal optimization
orders and tuning parameters of transformations at the
same time.

The new version of ICI enables arbitrary selection of le-
gal optimization passes and has a mechanism to change
parameters or transformations within passes. Since
GCC currently does not provide enough information
about dependencies between passes to detect legal or-
ders, and the optimization space is too large to check
all possible combinations, we focused on detecting in-
fluential passes and legal orders of optimizations. We
examined the pass orders generated by compiler flags
that improved program execution time or code size us-
ing iterative compilation.

Before we attempt to learn good optimization settings
and pass orders we first confirmed that there is indeed

performance to be gained within GCC from such actions
otherwise there is no point in trying to learn. By using
the Continuous Collective Compilation Framework [2]
to random search though the optimization flag space
(50% probability of selecting each optimization flag)
and MILEPOST GCC 4.2.2 on AMD Athlon64 3700+
and Intel Xeon 2800MHz we could improve execution
time of susan_corners by around 16%, compile time by
22% and code size by 13% using Pareto optimal points
as described in the previous work [23, 24]. Note, that
the same combination of flags degrade execution time
of this benchmark on Itanium-2 1.3GHz by 80% thus
demonstrating the importance of adapting compilers to
each new architecture. Figure 4a shows the combina-
tion of flags found for this benchmark on AMD platform
while Figures 4b,c show the passes invoked and moni-
tored by MILEPOST GCC for the default -O3 level and
for the best combination of flags respectively.

Given that there is good performance to be gained
by searching for good compiler flags, we now wish
to automatically select good optimization passes and
transformation parameters. These should enable fine-
grained program and compiler tuning as well as non-
intrusive continuous program optimizations without

5

��� �� �������	
��������������� ��
����� ��	 ������ ��
����� ������� ��
������������ �� ����
������	 ������ ��
���	
���	 ���
����	 ����� �� �������� ����� �� ����������������� �� ��� ������ �� ����� ������ �� ��� �����
����� �����
�	 �������
� �� ��������
� �� ������ �� �� ���� ����� �� ������ ��	 ��� �� ���� ��	 � �� ���
	 �������� ��	 �����������	 ������ � �� ����	 ��������������
��� �� ���������� �� ������ �	 ��������
��
 � �� ������ � �� ���������������� ������������	 �� ���������	 ������� �� �������������
���
������ �� �������������
� �� �������������������������� ������������ �� ������������� �� �����
����
� �� ������	 ��� ����������� �� �	 ���	 �������� �� �	 ���	 �
��
����� ��	 ������� ��
�� �� ��	 ��������
	 �����	 � �� ��	 ������� �� ��	 ����������� �� ��	 ������������
� ��	 �����������	 ������� ��	 ������� ��	 ������� ��	 ������
 �� ��	 ����� ��	 ������� ����� !"#� �$���� �%��	& �
	
�	 ���	 ����%
��& ��	 ����
	 ���%��� ������&�
��%����	& ��&� �
��%�
��
�%��
%
��
�%��	 ���	 %'()*+,-./,%���%� ��%���%� ��0����%��� ����%��������%� ��%���%1(/%)23')+()%�����	 %
��
�%4.35+%���� ���%��%%���$��0��%��
%
��
�%'()*+,-./,61(/6)23')+()%��
����%���%17,%
��
�%� ��0����%�����	 %��� ��%�	 ���& ���%�	 ���& ��� ����%�
�%
��
�%���	 ��%���%
��
�%���%����%������	 %��� ����%53/%��0�	 ��%����%���	 %������& �����%�� �
�%������%38()47%�������%��
����%� ��%1(/6)23')+()%�����%17,%� ��0����%�����	 %4.35'6'()*+,-./,69-')+()%��	 ������%�� %������%� �
�& ���
��%0
�&� ��	 ��& ���	 ��%� ���& �
	
�	 ���	 ���%� ���& �� �&
�	
	 ���%�$�
�%���	& ��& ������
	 ��%��	&� ��	 ��%������%���
	 ���%��	�
��%���
���%� ����%� ���%����%:'7,;%<*).77%���%�����%�����& ��	 %�����& ��
��
	 %�����& ��0�	 ��%�����& ���%����%��� ��%������%���%������ �%����	 �%������0%��� ��%����%����%���	 ����
�%���	 ����
�& ���%�����%� ��0�%��
%���������%���%����%����%��
�& ����%������%�	
��%�����	 �&
�����	 �%������	 ��%� ���& �� �%�
��%���	 ��%�
������%���
���%����	 �%��	& �	 ���0&� ��	 ��&� �
��%� �
�%���
& �	
	 � !=#� �$���� �%��	& �
	
�	 ���	 ����%
��& ��	 ����
	 ���%��� ������&�
��%����	& ��&� �
��%�
��
�%��
%
��
�%��	 ���	 %���%� ��%���%� ��0����%��� ����%��������%� ��%���%�����	 %
��
�%���� ���%��%���$��0��%��
%
��
�%��
����%���%
��
�%� ��0����%�����	 %��� ��%�	 ���& ���%�	 ���& ��� ����%�
�%
��
�%���	 ��%���%
��
�%���%����%������	 %��� ����%��0�	 ��%����%���	 %������& �����%�� �
�%������%�������%��
����%� ��%�����%� ��0����%�����	 %��	 ������%�� %������%� �
�& ���
��%0
�&� ��	 ��& ���	 ��%� ���& �
	
�	 ���	 ����%� ���& �� �&
�	
	 ���%�$�
�%���	& ��& ������
	 ��%��	&� ��	 ��%������%���
	 ���%��	�
��%���
���%� ����%� ���%����%���%�����%�����& ��	 %�����& ��
��
	 %�����& ��0�	 ��%5(()>?9-+(55%�����& ���%@,<%����%��� ��%������%���%������ �%����	 �%������0%��� ��%7'2,1;6����%����%���	 ����
�%���	 ����
�& ���%�����%� ��0�%��
%���������%���%����%����%��
�& ����%������%�	
��%�����	 �&
�����	 �%������	 ��%� ���& �� �%�
��%���	 ��%�
������%����
���%����	 �%��	& �	 ���0&� ��	 ��&� �
��%� �
�%���
& �	
	 � !A#
Figure 4: a) Selection of compiler flags found using CCC Framework with uniform random search strategy that
improve execution and compilation time for susan_corners benchmark over -O3, b) recorded compiler passes for
-O3 using ICI, c) recorded compiler passes for the good selection of flags (a)

modifications to Makefiles, etc. The current version
of ICI allows passes to be called directly using the
ici_run_pass function that in turn invokes GCC function
execute_one_pass. Therefore, we can circumvent the
default GCC Pass Manager and execute good sequences
of passes previously found by the CCC Framework as
shown in Figure 2b or search for new good orders of
optimizations. However, we leave the determination of
their interaction and dependencies for future work.

To verify that we can change the default optimization
pass orders using ICI, we recompiled the same bench-
mark with the -O3 flag but selecting passes shown in
Figure 4c. However, note that the GCC internal function
execute_one_pass shown in Figure 3c has gate control
(pass->gate()) to execute the pass only if the associate
optimization flags is selected. To avoid this gate con-
trol we use IC-Parameter "gate_status" and IC-Event
"avoid_gate" so that we can set gate_status to TRUE

within plugins and thus force its execution. The exe-
cution of the generated binary shows that we improve
its execution time by 13% instead of 16% and the rea-
son is that some compiler flags not only invoke associ-
ated pass such as -funroll-loops but also select specific
fine-grain transformation parameters and influence code
generation in other passes. Thus, at this point we recom-
pile programs with such flags always enabled, and in the
future plan to add support for such cases explicitly.

3.3 Adding program feature extractor pass

Our machine learnt model predicts the best GCC opti-
mization to apply to an input program based on its pro-
gram structure or program features. The program fea-
tures are typically a summary of the internal program
representation and characterize the essential aspects of
a program needed by the model to distinguish between

6

good and bad optimizations.

The current version of ICI allows invoking auxiliary
passes that are not a part of default GCC compiler.
These passes can monitor and profile the compilation
process or extract data structures needed to generate pro-
gram features.

During the compilation, the program is represented by
several data structures, implementing the intermediate
representation (tree-SSA, RTL etc), control flow graph
(CFG), def-use chains, the loop hierarchy, etc. The data
structures available depend on the compilation pass cur-
rently being performed. For statistical machine learn-
ing, the information about these data structures is en-
coded as a vector of constant size of numbers (i.e fea-
tures) - this process is called feature extraction and is
needed to enable optimization knowledge reuse among
different programs.

Therefore, we implemented an additional GCC pass ml-
feat to extract static program features. This pass is not
invoked during default compilation but can be called us-
ing a extract_program_static_features plugin after any
arbitrary pass starting from FRE when all the GCC data
necessary to produce features is ready.

In the MILEPOST GCC, the feature extraction is per-
formed in two stages. In the first stage, a relational rep-
resentation of the program is extracted; in the second
stage, the vector of features is computed from this rep-
resentation.

In the first stage, the program is considered to be charac-
terized by a number of entities and relations over these
entities. The entities are a direct mapping of similar en-
tities defined by the language reference, or generated
during the compilation. Such examples of entities are
variables, types, instructions, basic blocks, temporary
variables, etc.

A relation over a set of entities is a subset of their Carte-
sian product. The relations specify properties of the en-
tities or the connections between them. For describing
the relations we used a notation based on logic - Datalog
is a Prolog-like language but with a simpler semantics,
suitable for expressing relations and operations between
them [34, 33]

For extracting the relational representation of the pro-
gram, we used a simple method based on the examina-
tion of the include files. The compiler main data struc-
tures are struct data types, having a number of f ields.

Each such struct data type may introduce an entity, and
its f ields may introduce relations over the entity rep-
resenting the including struct data type and the entity
representing the data type of the f ield. This data is col-
lected using ml-feat pass.

In the second stage, we provide a Prolog program defin-
ing the features to be computed from the Datalog re-
lational extracted from the compiler internal data struc-
tures in the first stage. The extract_program_static _fea-
tures plugin invokes a Prolog compiler to execute this
program, the result being the vector of features shown
in Table 1 that can later be used by the Continuous Col-
lective Compilation Framework to build machine learn-
ing models and predict best sequences of passes for new
programs. This example shows the flexibility and capa-
bilities of the new version of ICI.

4 Using Machine Learning to Select Good Op-
timization Passes

The previous sections have described the infrastructure
necessary to build a learning compiler. In this section
we describe how this infrastructure is used in building a
model.

Our approach to selecting good passes for programs is
based upon the construction of a probabilistic model on
a set of M training programs and the use of this model in
order to make predictions of “good” optimization passes
on unseen programs.

Our specific machine learning method is similar to that
of [9] where a probability distribution over “good” solu-
tions (i.e. optimization passes or compiler flags) is learnt
across different programs. This approach has been re-
ferred in the literature to as Predictive Search Distribu-
tions (PSD) [11]. However, unlike [9, 11] where such a
distribution is used to focus the search of compiler op-
timizations on a new program, we use the distribution
learned to make one-shot predictions on unseen pro-
grams. Thus we do not search for the best optimization,
we automatically predict it.

4.1 The Machine Learning Model

Given a set of training programs T 1, . . . ,T M , which can
be described by (vectors of) features t1 . . . , tM, and for
which we have evaluated different sequences of opti-
mization passes (x) and their corresponding execution

7

times (or speed-ups y) so that we have for each pro-
gram M j an associated dataset D j = {(xi,yi)}N j

i=1, with
j = 1, . . .M, our goal is to predict a good sequence of
optimization passes x∗ when a new program T ∗ is pre-
sented.

We approach this problem by learning the mapping from
the features of a program t to a distribution over good
solutions q(x|t,θ), where θ are the parameters of the
distribution. Once this distribution has been learnt, pre-
dictions on a new program T ∗ is straightforward and it is
achieved by sampling at the mode of the distribution. In
other words, we obtain the predicted sequence of passes
by computing:

x∗ = argmax
x

q(x|t,θ). (1)

4.2 Continuous Collective Compilation Frame-
work

We used Continuous Collective Compilation Frame-
work [2] and MILEPOST GCC shown in Figure 1 to
generate a training set of programs together with com-
piler flags selected uniformly at random, associated se-
quences of passes, program features and speedups (code
size, compilation time) that is stored in the externally
accessible Global Optimization Database. We use this
training set to build machine learning model described
in the next section which in turn is used to predict the
best sequence of passes for a new program given its
feature vector. Current version of CCC Framework re-
quires minimal changes to the Makefile to pass opti-
mization flags or sequences of passes and has a support
to verify the correctness of the binary by comparing pro-
gram output with the reference one to avoid illegal com-
binations of optimizations.

4.3 Learning and Predicting

In order to learn the model it is necessary to fit a dis-
tribution over good solutions to each training program
beforehand. These solutions can be obtained, for ex-
ample, by using uniform sampling or by running an es-
timation of distribution algorithm (EDA, see [26] for
an overview) on each of the training programs. In our
experiments we use uniform sampling and we choose
the set of good solutions to be those optimization set-
tings that achieve at least 98% of the maximum speed-
up available in the corresponding program-dependent
dataset.

Let us denote the distribution over good solutions on
each training program by P(x|T j) with j = 1, . . . ,M. In
principle, these distributions can belong to any paramet-
ric family. However, In our experiments we use an IID
model where each of the elements of the sequence are
considered independently. In other words, the probabil-
ity of a “good” sequence of passes is simply the product
of each of the individual probabilities corresponding to
how likely each pass is to belong to a good solution:

P(x|T j) =
L

∏̀
=1

P(x`|T j), (2)

where L is the length of the sequence.

As proposed in [11], once the individual training distri-
butions P(x|T j) have been obtained, the predictive dis-
tribution q(x|t,θ) can be learnt by maximization of the
conditional likelihood or by using k-nearest neighbor
methods. In our experiments we use a 1-nearest neigh-
bor approach. In other words, we set the predictive dis-
tribution q(x|t,θ) to be the distribution corresponding
to the training program that is closest in feature space to
the new (test) program.

Note that we currently predict “good” sequences of opti-
mization passes that are associated to the best combina-
tion of compiler flags. We will investigate in future work
the application of our models to the general problem of
determining “optimal” order of optimization passes for
programs.

5 Experiments

We performed our experiments on four different plat-
forms:

• AMD – a cluster with 16 AMD Athlon 64 3700+
processors running at 2.4GHz

• IA32 – a cluster with 4 Intel Xeon processors run-
ning at 2.8GHz

• IA64 – a server with Itanium2 processor running at
1.3GHz

• ARC – FPGA implementation of the ARC 725D
processor running GNU/Linux with a 2.4.29 ker-
nel.

8

1

1.1

1.2

1.3

1.4

1.5

1.6

bi
tc

ou
nt

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

jp
eg

_c

jp
eg

_d

di
jk

st
ra

pa
tr

ic
ia

bl
ow

fis
h_

d
bl

ow
fis

h_
e

ri
jn

da
el

_d
ri

jn
da

el
_e sh
a

ad
pc

m
_c

ad
pc

m
_d

C
R

C
32

gs
m

qs
or

t1
st

ri
ng

se
ar

ch
1

sp
ee

d
u

p

AMD IA32 IA64

(a)

0.8

0.9

1

1.1

1.2

1.3

1.4

bi
tc

ou
nt

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

jp
eg

_c

jp
eg

_d

di
jk

st
ra

pa
tr

ic
ia

bl
ow

fis
h_

d
bl

ow
fis

h_
e

ri
jn

da
el

_d
ri

jn
da

el
_e sh
a

ad
pc

m
_c

ad
pc

m
_d

C
R

C
32

gs
m

qs
or

t1
st

ri
ng

se
ar

ch
1

A
ve

ra
ge

sp
ee

d
u

p

Iterative compilation Predicted optimization passes using ML and MILEPOST GCC

(b)

2.24 2.31 2.31 1.97

Figure 5: Experimental results when using iterative compilation with random search strategy (500 iterations; 50%
probability to select each flags; AMD,IA32,IA64) and when predicting best optimization passes based on program
features and ML model (ARC)

In all case the compiler used is MILEPOST GCC 4.2.x
with the ICI version 0.9.6 We decided to use open-
source MiBench benchmark with MiDataSets [19, 6]
(dataset No1 in all cases) due to its applicability to both
general purpose and embedded domains.

5.1 Generating Training Data

In order to build a machine learning model, we need
training data. This was generated by a random explo-
ration of a vast optimization search space using the CCC
Framework. It generated 500 random sequences of flags
either turned on or off. These flag settings can be read-
ily associated with different sequences of optimization
passes. Although such a number of runs is very small
in respect to the optimisation space, we have shown that

sufficient information can be gleaned from this to allow
significant speedup. Indeed, the size of the space left
unexplored serves to highlight our lack of knowledge in
this area, and the need for further work.

Firstly, features for each benchmark were extracted
from programs using the new pass within MILEPOST
GCC, and these features then sent to the Global Op-
timization Database within CCC Framework. An ML
model for each benchmark was built, using the execu-
tion time gathered from 500 separate runs using differ-
ent random sequences of passes, and a fixed data set.
Each run was repeated 5 times so speedups were not
caused by cache priming etc.). After each run, the ex-
perimental results including execution time, compila-
tion time, code size and program features are sent to the

9

database where they are stored for future reference.

Figure 5a shows that considerable speedups can be al-
ready obtained after iterative compilation on all plat-
forms. However, this is a time-consuming process and
different speedups across different platforms motivates
the use of machine learning to automatically build spe-
cialized compilers and predict the best optimization
flags or sequences of passes for different architectures.

5.2 Evaluating Model Performance

Once a model has been built for each of our bench-
marks, we can evaluate the results by introducing a
new program to the system, and measuring how well
the prediction provided by our model performs. In this
work we did not use a separate testing benchmark suite
due to time constraints, so instead leave-one-out-cross-
validation was used. Using this method, all training data
relating to the benchmark being tested is excluded from
the training process, and the models rebuilt. When a sec-
ond benchmark is tested, the training data pertaining to
the first benchmark is returned to the training set, that of
the second benchmark excluded, and so on. In this way
we ensure that each benchmark is tested as a new pro-
gram entering the system for the first time—of course,
in real-world usage, this process is unnecessary.

When a new program is compiled, features are first gen-
erated using MILEPOST GCC. These features are then
sent to our ML model within CCC Framework (imple-
mented as a MATLAB server), which processes them
and returns a predicted sequence of passes which should
either improve execution time or reduce code size or
both. We then evaluate the prediction by compiling the
program with the suggested sequence of passes, mea-
sure the execution time and compare with the origi-
nal time for the default ’-O3’ optimization level. It
is important to note that only one compilation occurs
at evaluation—there is no search involved. Figure 5b
shows these results for the ARC725D. It demonstrates
that except a few pathological cases where predicted
flags degraded performance and which analysis we leave
for future work, using CCC Framework, MILEPOST
GCC and Machine Learning Models we can improve
original ARC GCC by around 11%.

This suggests that our techniques and tools can be effi-
cient to build future iterative adaptive specialized com-
pilers.

6 Conclusions and Future Work

In this paper we have shown that MILEPOST GCC has
significant potential in the automatic tuning of GCC op-
timization. We plan to use these techniques and tools
to further investigate the automatic selection of opti-
mal orders of optimization passes and fine-grain tun-
ing of transformation parameters. The overall frame-
work will also allow the analysis of interactions be-
tween optimizations and investigation of the influence
of program inputs and run-time state on program opti-
mizations. Future work will also include fine-grain run-
time adaptation for multiple program inputs on hetero-
geneous multi-core architectures.

7 Acknowledgments

The authors would like to thank Sebastian Pop for the
help with modifying and debugging GCC and John
W.Lockhart for the help with editing this paper. This
research is supported by the European Project MILE-
POST (Machine Learning for Embedded Programs Op-
timisation) [4] and by the HiPEAC European Network
of Excellence (High-Performance Embedded Architec-
ture and Compilation) [5].

References

[1] ACOVEA: Using Natural Selection to Investigate
Software Complexities. http://www.
coyotegulch.com/products/acovea.

[2] Continuous Collective Compilation Framework.
http://cccpf.sourceforge.net.

[3] ESTO: Expert System for Tuning Optimizations.
http:
//www.haifa.ibm.com/projects/
systems/cot/esto/index.html.

[4] EU Milepost project (MachIne Learning for
Embedded PrOgramS opTimization).
http://www.milepost.eu.

[5] European Network of Excellence on
High-Performance Embedded Architecture and
Compilation (HiPEAC).
http://www.hipeac.net.

[6] MiDataSets SourceForge development site.
http://midatasets.sourceforge.net.

10

[7] Plugin project.
http://libplugin.sourceforge.net.

[8] QLogic PathScale EKOPath Compilers.
http://www.pathscale.com.

[9] F. Agakov, E. Bonilla, J.Cavazos, B.Franke,
G. Fursin, M. O’Boyle, J. Thomson,
M. Toussaint, and C. Williams. Using machine
learning to focus iterative optimization. In
Proceedings of the International Symposium on
Code Generation and Optimization (CGO), 2006.

[10] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle,
and E. Rohou. Iterative compilation in a
non-linear optimisation space. In Proceedings of
the Workshop on Profile and Feedback Directed
Compilation, 1998.

[11] E. V. Bonilla, C. K. I. Williams, F. V. Agakov,
J. Cavazos, J. Thomson, and M. F. P. O’Boyle.
Predictive search distributions. In W. W. Cohen
and A. Moore, editors, Proceedings of the 23rd
International Conference on Machine learning,
pages 121–128, New York, NY, USA, 2006.
ACM.

[12] S. Callanan, D. J. Dean, and E. Zadok. Extending
gcc with modular gimple optimizations. In
Proceedings of the GCC Developers’
Summit’2007, 2007.

[13] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla,
M. O’Boyle, and O. Temam. Rapidly selecting
good compiler optimizations using performance
counters. In Proceedings of the 5th Annual
International Symposium on Code Generation
and Optimization (CGO), March 2007.

[14] K. Cooper, A. Grosul, T. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman.
ACME: adaptive compilation made efficient. In
Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), 2005.

[15] K. Cooper, P. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic
algorithms. In Proceedings of the Conference on
Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 1–9, 1999.

[16] B. Elliston. Studying optimisation sequences in
the gnu compiler collection. Technical Report
ZITE8199, School of Information Technology
and Electical Engineering, Australian Defence
Force Academy, 2005.

[17] B. Franke, M. O’Boyle, J. Thomson, and
G. Fursin. Probabilistic source-level optimisation
of embedded programs. In Proceedings of the
Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), 2005.

[18] G. Fursin. Iterative Compilation and Performance
Prediction for Numerical Applications. PhD
thesis, University of Edinburgh, United Kingdom,
2004.

[19] G. Fursin, J. Cavazos, M. O’Boyle, and
O. Temam. Midatasets: Creating the conditions
for a more realistic evaluation of iterative
optimization. In Proceedings of the International
Conference on High Performance Embedded
Architectures & Compilers (HiPEAC 2007),
January 2007.

[20] G. Fursin and A. Cohen. Building a practical
iterative interactive compiler. In 1st Workshop on
Statistical and Machine Learning Approaches
Applied to Architectures and Compilation
(SMART’07), colocated with HiPEAC 2007
conference, January 2007.

[21] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam.
A practical method for quickly evaluating
program optimizations. In Proceedings of the
International Conference on High Performance
Embedded Architectures & Compilers (HiPEAC
2005), pages 29–46, November 2005.

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A
free, commercially representative embedded
benchmark suite. In IEEE 4th Annual Workshop
on Workload Characterization, Austin, TX,
December 2001.

[23] K. Heydemann and F. Bodin. Iterative
compilation for two antagonistic criteria:
Application to code size and performance. In
Proceedings of the 4th Workshop on
Optimizations for DSP and Embedded Systems,
colocated with CGO, 2006.

11

[24] K. Hoste and L. Eeckhout. Cole: Compiler
optimization level exploration. In Proceedings of
the International Symposium on Code Generation
and Optimization (CGO), 2008.

[25] P. Kulkarni, W. Zhao, H. Moon, K. Cho,
D. Whalley, J. Davidson, M. Bailey, Y. Paek, and
K. Gallivan. Finding effective optimization phase
sequences. In Proc. Languages, Compilers, and
Tools for Embedded Systems (LCTES), pages
12–23, 2003.

[26] P. Larrañaga and J. A. Lozano. Estimation of
Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic
Publishers, Norwell, MA, USA, 2001.

[27] F. Matteo and S. Johnson. FFTW: An adaptive
software architecture for the FFT. In Proceedings
of the IEEE International Conference on
Acoustics, Speech, and Signal Processing,
volume 3, pages 1381–1384, Seattle, WA, May
1998.

[28] A. Monsifrot, F. Bodin, and R. Quiniou. A
machine learning approach to automatic
production of compiler heuristics. In Proceedings
of the International Conference on Artificial
Intelligence: Methodology, Systems, Applications,
LNCS 2443, pages 41–50, 2002.

[29] Z. Pan and R. Eigenmann. Fast and effective
orchestration of compiler optimizations for
automatic performance tuning. In Proceedings of
the International Symposium on Code Generation
and Optimization (CGO), pages 319–332, 2006.

[30] B. Singer and M. Veloso. Learning to predict
performance from formula modeling and training
data. In Proceedings of the Conference on
Machine Learning, 2000.

[31] M. Stephenson and S. Amarasinghe. Predicting
unroll factors using supervised classification. In
Proceedings of International Symposium on Code
Generation and Optimization (CGO), pages
123–134, 2005.

[32] S. Triantafyllis, M. Vachharajani,
N. Vachharajani, and D. August. Compiler
optimization-space exploration. In Proceedings of
the International Symposium on Code Generation
and Optimization (CGO), pages 204–215, 2003.

[33] J. Ullman. Principles of database and knowledge
systems. Computer Science Press, 1, 1988.

[34] J. Whaley and M. S. Lam. Cloning based context
sensitive pointer alias analysis using binary
decision diagrams. In Proceedings of the
Conference on Programming Language Design
and Implementation (PLDI), 2004.

[35] R. Whaley and J. Dongarra. Automatically tuned
linear algebra software. In Proc. Alliance, 1998.

12

Feature Description:
number:
ft1 Number of basic blocks in the method
ft2 Number of basic blocks with a single successor
ft3 Number of basic blocks with two successors
ft4 Number of basic blocks with more then two successors
ft5 Number of basic blocks with a single predecessor
ft6 Number of basic blocks with two predecessors
ft7 Number of basic blocks with more then two predecessors
ft8 Number of basic blocks with a single predecessor and a single successor
ft9 Number of basic blocks with a single predecessor and two successors
ft10 Number of basic blocks with a two predecessors and one successor
ft11 Number of basic blocks with two successors and two predecessors
ft12 Number of basic blocks with more then two successors and more then two predecessors
ft13 Number of basic blocks with number of instructions less then 15
ft14 Number of basic blocks with number of instructions in the interval [15, 500]
ft15 Number of basic blocks with number of instructions greater then 500
ft16 Number of edges in the control flow graph
ft17 Number of critical edges in the control flow graph
ft18 Number of abnormal edges in the control flow graph
ft19 Number of direct calls in the method
ft20 Number of conditional branches in the method
ft21 Number of assignment instructions in the method
ft21 Number of unconditional branches in the method
ft22 Number of binary integer operations in the method
ft23 Number of binary floating point operations in the method
ft24 Number of instructions in the method
ft25 Average of number of instructions in basic blocks
ft26 Average of number of phi-nodes at the beginning of a basic block
ft27 Average of arguments for a phi-node
ft28 Number of basic blocks with no phi nodes
ft29 Number of basic blocks with phi nodes in the interval [0, 3]
ft30 Number of basic blocks with more then 3 phi nodes
ft31 Number of basic block where total number of arguments for all phi-nodes is in greater then 5
ft32 Number of basic block where total number of arguments for all phi-nodes is in the interval [1, 5]
ft33 Number of switch instructions in the method
ft34 Number of unary operations in the method
ft35 Number of instruction that do pointer arithmetic in the method
ft36 Number of indirect references via pointers ("*" in C)
ft37 Number of times the address of a variables is taken ("&" in C)
ft38 Number of times the address of a function is taken ("&" in C)
ft39 Number of indirect calls (i.e. done via pointers) in the method
ft40 Number of assignment instructions with the left operand an integer constant in the method
ft41 Number of binary operations with one of the operands an integer constant in the method
ft42 Number of calls with pointers as arguments
ft42 Number of calls with the number of arguments is greater then 4
ft44 Number of calls that return a pointer
ft45 Number of calls that return an integer
ft46 Number of occurrences of integer constant zero
ft47 Number of occurrences of 32-bit integer constants
ft48 Number of occurrences of integer constant one
ft49 Number of occurrences of 64-bit integer constants
ft50 Number of references of a local variables in the method
ft51 Number of references (def/use) of static/extern variables in the method
ft52 Number of local variables referred in the method
ft53 Number of static/extern variables referred in the method
ft54 Number of local variables that are pointers in the method
ft55 Number of static/extern variables that are pointers in the method

Table 1: List of static program features currently available in the MILEPOST GCC

13

