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Abstract Tuning compiler optimizations for rapidly evolving hardware makes porting

and extending an optimizing compiler for each new platform extremely challenging. It-

erative optimization is a popular approach to adapting programs to a new architecture

automatically using feedback-directed compilation. However, the large number of eval-

uations required for each program has prevented iterative compilation from widespread

take-up in production compilers. Machine learning has been proposed to tune optimiza-

tions across programs systematically but is currently limited to a few transformations,

long training phases and critically lacks publicly released, stable tools.

Our approach is to develop a modular, extensible, self-tuning optimization infras-

tructure to automatically learn the best optimizations across multiple programs and

architectures based on the correlation between program features, run-time behavior

and optimizations. In this paper we describe Milepost GCC, the first publicly-available

open-source machine learning-based compiler. It consists of an Interactive Compilation

Interface (ICI) and plugins to extract program features and exchange optimization data

with the cTuning.org open public repository. It automatically adapts the internal op-

timization heuristic at function-level granularity to improve execution time, code size

and compilation time of a new program on a given architecture. Part of the Milepost

technology together with low-level ICI-inspired plugin framework is now included in

the mainline GCC.

We developed machine learning plugins based on probabilistic and transductive ap-

proaches to predict good combinations of optimizations. Our preliminary experimental

results show that it is possible to automatically reduce the execution time of individual

MiBench programs, some by more than a factor of 2, while also improving compilation
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time and code size. On average we are able to reduce the execution time of the MiBench

benchmark suite by 11% for the ARC reconfigurable processor. We also present a re-

alistic multi-objective optimization scenario for Berkeley DB library using Milepost

GCC and improve execution time by approximately 17%, while reducing compilation

time and code size by 12% and 7% respectively on Intel Xeon processor.

Keywords machine learning compiler · self-tuning compiler · adaptive compiler ·
automatic performance tuning · machine learning · program characterization ·
program features · collective optimization · continuous optimization · multi-objective

optimization · empirical performance tuning · optimization repository · iterative
compilation · feedback-directed compilation · adaptive compilation · optimization

prediction · portable optimization

1 Introduction

Designers of new processor architectures attempt to bring higher performance and

lower power across a wide range of programs while keeping time to market as short as

possible. However, static compilers fail to deliver satisfactory levels of performance as

they cannot keep pace with the rate of change in hardware evolution. Fixed heuristics

based on simplistic hardware models and lack of run-time information means that much

manual retuning of the compiler is needed for each new hardware generation. Typical

systems now have multiple heterogeneous reconfigurable cores making such manual

compiler tuning increasingly infeasible.

The difficulty of achieving portable performance has led to empirical iterative com-

pilation for statically compiled programs [22,69,30,52,29,54,31,77,37,70,46,47,36,39,

28,40], applying automatic compiler tuning based on feedback-directed compilation.

Here the static optimization model of a compiler is replaced by an iterative search of

the optimization space to empirically find the most profitable solutions that improve

execution time, compilation time, code size, power and other metrics. Needing little

or no knowledge of the current platform, this approach can adapt programs to any

given architecture. This approach is currently used in library generators and adaptive

tools [84,63,71,14,1,6]. However it is generally limited to searching for combinations of

global compiler optimization flags and tweaking a few fine-grain transformations within

relatively narrow search spaces. The main barrier to its wider use is the currently ex-

cessive compilation and execution time needed in order to optimize each program. This

prevents a wider adoption of iterative compilation for general purpose compilers.

Our approach to solve this problem is to use machine learning which has the po-

tential of reusing knowledge across iterative compilation runs, gaining the benefits of

iterative compilation while reducing the number of executions needed. The objective

of the Milepost project [11] is to develop compiler technology that can automatically

learn how to best optimize programs for configurable heterogeneous processors based

on the correlation between program features, run-time behavior and optimizations. It

also aims to dramatically reduce the time to market configurable or frequently evolving

systems. Rather than developing a specialized compiler by hand for each configuration,

Milepost aims to produce optimizing compilers automatically.

A key goal of the project is to make machine learning based compilation a realistic

technology for general-purpose production compilers. Current approaches [65,27,72,

17,26] are highly preliminary, limited to global compiler flags or a few transformations
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considered in isolation. GCC was selected as the compiler infrastructure for Milepost

as it is currently the most stable and robust open-source compiler. GCC is currently

the only production compiler that supports more than 30 different architectures and

has multiple aggressive optimizations making it a natural vehicle for our research. Each

new version usually features new transformations and it may take months to adjust

each optimization heuristic, if only to prevent performance degradation in any of the

supported architectures. This further emphasizes the need for an automated approach.

We use the Interactive Compilation Interface (ICI) [8,49] that separates the opti-

mization process from a particular production compiler. ICI is a plugin system that

acts as a “middleware” interface between production compilers such as GCC and user-

definable research plugins. ICI allowed us to add a program feature extraction module

and to select arbitrary optimization passes in GCC. In the future, compiler indepen-

dent ICI should help transfer Milepost technology to other compilers. We connected

Milepost GCC to a public collective optimization database at cTuning.org [3,38,42].

This provides a wealth of continuously updated training data from multiple users and

environments.

In this paper we present experimental results showing that it is possible to improve

the performance of the well-known MiBench [45] benchmark suite automatically using

iterative compilation and machine learning on several platforms including x86: Intel

and AMD, and the ARC configurable core family. Using Milepost GCC, after a few

weeks training, we were able to learn a model that automatically improves the execution

time of some individual MiBench programs by a factor of more than 2 while improving

the overall MiBench suite by 11% on reconfigurable ARC architecture, often without

sacrificing code size or compilation time. Furthermore, our approach supports general

multi-objective optimization where a user can choose to minimize not only execution

time but also code size and compilation time.

This paper is organized as follows: this section provided motivation for our re-

search and developments. It is followed by Section 2 describing the experimental setup

used throughout the article. Section 3 describes how iterative compilation can deliver

multi-objective optimization. Section 4 describes the overall Milepost collaborative in-

frastructure while Section 5 describes our machine learning techniques used to predict

good optimizations based on program features and provides experimental evaluation.

It is followed by the sections on related and future work.

2 Experimental setup

The tools, benchmarks, architectures and environment used throughout the article are

briefly described in this section.

2.1 Compiler

We considered several compilers for our research and development including Open64 [12],

LLVM [9], ROSE [16], Phoenix [15], GCC [7]. GCC was selected as it is a mature and

popular open-source optimizing compiler that supports many languages, has a large

community, is competitive with the best commercial compilers, and features a large

number of program transformation techniques including advanced optimizations such

as the polyhedral transformation framework (GRAPHITE) [78]. Furthermore, GCC is
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the only extensible open-source optimizing compiler that supports more than 30 pro-

cessor families. However, our developed techniques are not compiler dependent. We

selected the latest GCC 4.4.x as the base for our machine-learning enabled self-tuning

compiler.

2.2 Optimizations

There are approximately 100 flags available for tuning in the most recent version of

GCC, all of which are considered by our framework. However, it is impossible to validate

all possible combinations of optimizations due to their number. Since GCC has not

been originally designed for iterative compilation it is not always possible to explore

the entire optimization space by simply combining multiple compiler optimization flags,

because some of them are initiated only with a given global GCC optimization level (-

Os,-O1,-O2,-O3). We overcome this issue by selecting a global optimization level -O1 ..

-O3 first and then either turning on a particular optimization through a corresponding

flag -f<optimization name> or turning it off using -fno-<optimization name> flag.

In some cases, certain combinations of compiler flags or passes cause the compiler to

crash or produce incorrect program execution. We reduce the probability of such cases

by comparing outputs of programs with reference outputs.

2.3 Platforms

We selected two general-purpose and one embedded processor for evaluation:

– AMD – a cluster of 16 AMD Opteron 2218, 2.6GHz, 4GB main memory, 2MB L2

cache, running Debian Linux Sid x64 with kernel 2.6.28.1 (provided by GRID5000 [44])

– Intel – a cluster of 16 Intel Xeon EM64T, 3GHz, 2GB main memory, 1MB L2

cache, running Debian Linux Sid x64 with kernel 2.6.28.1 (provided by GRID5000)

– ARC – FPGA implementation of the ARC 725D reconfigurable processor, 200MHz,

32KB L1 cache, running Linux ARC with kernel 2.4.29

We specifically selected platforms that have been in the market for some time but

not outdated to allow a fair comparison of our optimization techniques with default

compiler optimization heuristics that had been reasonably hand-tuned.

2.4 Benchmarks and experiments

We use both embedded and server processors so we selected MiBench/cBench [45,39,

38] benchmark suite for evaluation, covering a broad range of applications from simple

embedded functions to larger desktop/server programs. Most of the benchmarks have

been rewritten to be easily portable to different architectures; we use dataset 1 in all

cases. We encountered problems while compiling 4 tiff programs on the ARC platform

and hence used them only on AMD and Intel platforms.

We use OProfile [13] with hardware counters support to perform non intrusive

function-level profiling during each run. This tool may introduce some overhead, so we

execute each compiled program three times and averaged the execution and compilation

time. In the future, we plan to use more statistically rigorous approaches [75,43]. For
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this study, we selected the most time consuming function from each benchmark for

further analysis and optimization. If a program has several hot functions depending on

a dataset, we analyze and optimize them one by one and report separately. Analyzing

the effects of interactions between multiple functions on optimization is left for future

work.

2.5 Collective optimization database

All experimental results were recorded in the public Collective Optimization Database

[3,38,42] at cTuning.org, allowing independent analysis of our results.

3 Motivation

This section shows that tuning optimization heuristics of an existing real-world com-

piler for multiple objectives such as execution time, code size and compilation time

is a non-trivial task. We demonstrate that iterative compilation can effectively solve

this problem, however often with excessive search costs that motivate the use of ma-

chine learning to mitigate the need for per-program iterative compilation and learn

optimizations across programs based on their features.

3.1 Multi-objective empirical iterative optimization

Iterative compilation is a popular method to explore different optimizations by exe-

cuting a given program on a given architecture and finding good solutions to improve

program execution time and other characteristics based on empirical search.

We selected 88 program transformations of GCC known to influence performance,

including inlining, unrolling, scheduling, register allocation, and constant propagation.

We selected 1000 combinations of optimizations using a random search strategy with

50% probability to select each flag and either turn it on or off. We use this strategy to

allow uniform unbiased exploration of unknown optimization search spaces. In order

to validate the resulting diversity of program transformations, we checked that no two

combinations of optimizations generated the same binary for any of the benchmarks

using the MD5 checksum of the assembler code obtained through the objdump -d

command. Occasionally, random selection of flags in GCC may result in an invalid

code. In order to avoid such situations, we validated all generated combinations of

optimizations by comparing the outputs of all benchmarks used in our study with the

recorded outputs during reference runs when compiled with -O3 global optimization

level.

Figure 1 shows the best execution time speedup achieved for each benchmark over

the highest GCC optimization level (-O3) after 1000 iterations across 3 selected ar-

chitectures. It confirms results from previous research on iterative compilation and

demonstrates that it is possible to outperform GCC’s highest default optimization

level for most programs using random iterative search for good combinations of opti-

mizations. Several benchmarks achieve more than 2 times speedup while on average

we reached speedups of 1.33 and 1.4 for Intel and AMD respectively and a smaller
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Fig. 1 Maximum execution time speedups over the highest GCC optimization level (-O3) us-
ing iterative compilation with uniform random distribution after 1000 iterations on 3 selected
architectures.

speedup of 1.15 for ARC. This is likely due to simpler architecture and less sensitivity

to program optimizations.

However, the task of an optimizing compiler is not only to improve execution time

but also to balance code size and compilation time across a wide range of programs

and architectures. The violin graphs 1 in Figure 2 show high variation of execution

time speedups, code size improvements and compilation time speedups during iterative

compilation across all benchmarks on Intel platform. Multi-objective optimization in

such cases depend on end-user usage scenarios: improving both execution time and

code size is often required for embedded applications, improving both compilation and

execution time is important for data centers and real-time systems, while improving

only execution time is common for desktops and supercomputers.

As an example, in Figure 3, we present the execution time speedups vs code size

improvements and vs compilation time for susan c on the AMD platform. Naturally,

depending on optimization scenario, users are interested in optimization cases on the

frontier of the program optimization area. Circles on these graphs show the 2D frontier

that improves at least two metrics, while squares show optimization cases where the

speedup is also achieved on the third optimization metric and is more than some

threshold (compilation time speedup is more than 2 in the first graph and code size

improvement is more than 1.2 in the second graph). These graphs demonstrate that for

this selected benchmark and architecture there are relatively many optimization cases

that improve execution time, code size and compilation time simultaneously. This is

because many flags turned on for the default optimization level (-O3) do not influence

this program or even degrade performance and take considerable compilation time.

1 Violin graphs are similar to box graphs, showing the probability density in addition to
min, max and interquartile.
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Fig. 2 Distribution of execution time speedups, code size improvements and compilation time
speedups on Intel platform during iterative compilation (1000 iterations).

Figure 4 summarizes code size improvements and compilation time speedups achiev-

able on Intel platform across evaluated programs with the execution time speedups

within 95% of the maximum available during iterative compilation. We can observe

that in some cases we can improve both execution time, code size and compilation
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Fig. 3 Distribution of execution time speedups, code size improvements and compilation time
speedups for benchmarks susan c on AMD platform during iterative compilation. Depending
on optimization scenarios, good optimization cases are depicted with circles on 2D optimization
area frontier and with squares where third metric is more than some threshold (compilation
time speedup > 2 or code size improvement > 1.2).

time such as for susan c and dijkstra for example. In some other cases, without avoid-

ing degradation of execution time for the default optimization level (-O3), we can
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improve compilation time considerably (more than 1.7 times) and code size such as

for jpeg c and patricia. Throughout the rest of the article, we will consider improving

execution time of primary importance, then code size and compilation time. However,

our self-tuning compiler can work with other arbitrary optimization scenarios. Users

may provide their own plugins to choose optimal solutions, for example using a Pareto

distribution as shown in [46,47].
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Fig. 4 Code size improvements and compilation time speedups for optimization cases with
execution time speedups within 95% of the maximum available on Intel platform (as found by
iterative compilation).

The combinations of flags corresponding to Figure 4 across all programs and ar-

chitectures are presented 2 in Table 1. Some combinations can reduce compilation

time by 70% which can be critical when compiling large-scale applications or for cloud

computing services where a quick response time is critical. The diversity of compiler

optimizations involved demonstrates that the compiler optimization space is not trivial

and the compiler best optimization heuristic (-O3) is far from optimal. All combinations

of flags found per program and architecture during this research are available on-line in

the Collective Optimization Database [3] to allow end-users to optimize their programs

or enable further collaborative research.

Finally, Figure 5 shows that it may take on average 70 iterations before reaching

95% of the speedup available after 1000 iterations (averaged over 10 repetitions) and is

heavily dependent on the programs and architectures. Such a large number of iterations

is needed due to an increasing number of aggressive optimizations available in the

compiler where multiple combinations of optimizations can both considerably increase

or decrease performance, change code size and compilation time.

2 The flags that do not influence execution time, code size or compilation time have been
iteratively and automatically removed from the original combination of random optimizations
using CCC framework to simplify the analysis of the results.



10

-O1 -fcse-follow-jumps -fno-tree-ter -ftree-vectorize

-O1 -fno-cprop-registers -fno-dce -fno-move-loop-invariants -frename-registers -fno-tree-copy-
prop -fno-tree-copyrename

-O1 -freorder-blocks -fschedule-insns -fno-tree-ccp -fno-tree-dominator-opts

-O2

-O2 -falign-loops -fno-cse-follow-jumps -fno-dce -fno-gcse-lm -fno-inline-functions-called-once
-fno-schedule-insns2 -fno-tree-ccp -fno-tree-copyrename -funroll-all-loops

-O2 -finline-functions -fno-omit-frame-pointer -fschedule-insns -fno-split-ivs-in-unroller -fno-
tree-sink -funroll-all-loops

-O2 -fno-align-jumps -fno-early-inlining -fno-gcse -fno-inline-functions-called-once -fno-move-
loop-invariants -fschedule-insns -fno-tree-copyrename -fno-tree-loop-optimize -fno-tree-ter -
fno-tree-vrp

-O2 -fno-caller-saves -fno-guess-branch-probability -fno-ira-share-spill-slots -fno-tree-reassoc
-funroll-all-loops -fno-web

-O2 -fno-caller-saves -fno-ivopts -fno-reorder-blocks -fno-strict-overflow -funroll-all-loops

-O2 -fno-cprop-registers -fno-move-loop-invariants -fno-omit-frame-pointer -fpeel-loops

-O2 -fno-dce -fno-guess-branch-probability -fno-strict-overflow -fno-tree-dominator-opts -fno-
tree-loop-optimize -fno-tree-reassoc -fno-tree-sink

-O2 -fno-ivopts -fpeel-loops -fschedule-insns

-O2 -fno-tree-loop-im -fno-tree-pre

-O3 -falign-loops -fno-caller-saves -fno-cprop-registers -fno-if-conversion -fno-ivopts -freorder-
blocks-and-partition -fno-tree-pre -funroll-all-loops

-O3 -falign-loops -fno-cprop-registers -fno-if-conversion -fno-peephole2 -funroll-all-loops

-O3 -falign-loops -fno-delete-null-pointer-checks -fno-gcse-lm -fira-coalesce -floop-interchange
-fsched2-use-superblocks -fno-tree-pre -fno-tree-vectorize -funroll-all-loops -funsafe-loop-
optimizations -fno-web

-O3 -fno-gcse -floop-strip-mine -fno-move-loop-invariants -fno-predictive-commoning -ftracer

-O3 -fno-inline-functions-called-once -fno-regmove -frename-registers -fno-tree-copyrename

-O3 -fno-inline-functions -fno-move-loop-invariants

Table 1 Best found combinations of Milepost GCC flags to improve execution time, code
size and compilation time after iterative compilation (1000 iterations) across all evaluated
benchmarks and platforms.

The experimental results of this section suggest that iterative compilation can ef-

fectively generalize and automate the program optimization process but can be too

time consuming. Hence it is important to speed up iterative compilation. In the next

section, we present the Milepost framework which speeds up program optimization

through machine learning.

4 Milepost optimization approach and framework

As shown in the previous section, iterative compilation can considerably outperform

existing compilers but at the cost of excessive recompilation and program execution

during optimization search space exploration. Multiple techniques have been proposed

to speed up this process. For example, ACOVEA tool [1] utilizes genetic algorithms;

hill-climbing search [37] and run-time function-level per-phase optimization evalua-

tion [40] have been used, as well as the use of Pareto distribution [46,47] to find multi-

objective solutions. However, these approaches start their exploration of optimizations

for a new program from scratch and do not reuse any prior optimization knowledge

across different programs and architectures.

The Milepost project takes an orthogonal approach based on the observation that

similar programs may exhibit similar behavior and require similar optimizations so it
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Fig. 5 Number of iterations needed to obtain 95% of the available speedup using iterative
compilation with uniform random distribution.

is possible to correlate program features and optimizations, thereby predicting good

transformations for unseen programs based on previous optimization experience [65,

27,72,17,48,26,42]. In the current version of Milepost GCC we use static program

features (such as the number of instructions in a method, number of branches, etc)

to characterize programs and build predictive models. Naturally, since static features

may not be enough to capture run-time program behavior, we plan to add plugins

to improve program and optimization correlation based on dynamic features (perfor-

mance counters [26], microarchitecture-independent characteristics [48], reactions to

transformations [42] or semantically non-equivalent program modifications [41]).

The next section describes the overall framework and is followed by a detailed de-

scription of Milepost GCC and the Interactive Compiler Interface. This is then followed

by a discussion of the features used to predict good optimizations.

4.1 Milepost adaptive optimization framework

The Milepost framework shown in Figure 6 uses a number of components including (i) a

machine learning enabled Milepost GCC with Interactive Compilation Interface (ICI)

to modify internal optimization decisions, (ii) a Continuous Collective Compilation

Framework (CCC) to perform iterative search for good combinations of optimizations

and (iii) a Collective Optimization Database (COD) to record compilation and exe-

cution statistics in the common repository. Such information is later used as training

data for the machine learning models. We use public COD that is hosted at cTun-

ing.org [3,38,42]. The Milepost framework currently proceeds in two distinct phases,

in accordance with typical machine learning practice: training and deployment.

Training During the training phase we need to gather information about the structure

of programs and record how they behave when compiled under different optimization



12

 

 

MILEPOST GCC  
with ICI 

 
IC Plugins  
 Record sequences of 

optimization passes per 
function  

Extract static 
program features  

Program1 

ProgramN 

… 

T
raining 

New program 

D
eploym

ent 

MILEPOST GCC  

Extract static 
program features  

 

Substitute compiler default 
optimization heuristic with 

predicted passes  

Compiler 
independent plugins 
to perform iterative 

compilation and 
model training  

Continuous Collective  
Compilation Framework 

CCC 

Predict ing “good” 
passes to improve 
exec. time, code 

size and comp. time 
  

cTuning.org  
 Open Collaborative 

Optimization Center 
 

Collective 
Optimization Web 

Services  

• Register events 
• Query database 
• Get statistics 
• Predict 

optimizations 
… 

Web server 
 

Fig. 6 Open framework to automatically tune programs and improve default optimization
heuristics using predictive machine learning techniques, Milepost GCC with Interactive Com-
pilation Interface (ICI) and program features extractor, CCC Framework to train ML model
and predict good optimization passes, and COD optimization repository at cTuning.org.

settings. Such information allows machine learning tools to correlate aspects of pro-

gram structure, or features, with optimizations, building a strategy that predicts good

combinations of optimizations.

In order to train a useful model, a large number of compilations and executions

are needed as training examples. These training examples are generated by CCC [2,

38], which evaluates different combinations of optimizations and stores execution time,

profiling information, code size, compilation time and other metrics in a database. The

features of the program are also extracted from Milepost GCC and stored in the COD.

Plugins allow fine grained control and examination of the compiler, driven externally

through shared libraries.

Deployment Once sufficient training data is gathered, multiple machine learning mod-

els can be created. Such models aim to correlate a given set of program features with

profitable program transformations to predict good optimization strategies. They can

later be re-inserted as plugins back to Milepost GCC or deployed as web-service at

cTuning.org. The last method allows continuous update of the machine learning model

based on collected information from multiple users. When encountering a new pro-

gram, Milepost GCC determines the program’s features and passes them to the model

to predict the most profitable optimizations to improve execution time or other metrics

depending on the user’s optimization requirements.

4.2 Milepost GCC and Interactive Compilation Interface

Current production compilers often have fixed and black-box optimization heuristics

without the means to fine-tune the application of transformations. This section de-

scribes the Interactive Compilation Interface (ICI) [49] which unveils a compiler and
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provides opportunities for external control and examination of its optimization deci-

sions with minimal changes. To avoid the pitfall of revealing intermediate representation

and libraries of the compiler to a point where it would overspecify to many internals

details and prevent further evolution, we choose to control the decision process itself,

granting access only to the high-level features needed for effectively taking a deci-

sion. Optimization settings at a fine-grained level, beyond the capabilities of command

line options or pragmas, can be managed through external shared libraries, leaving

the compiler uncluttered. By replacing default optimization heuristics, execution time,

code size and compilation time can be improved.

We decided to implement ICI for GCC and transform it into a research self-tuning

compiler to provide a common stable extensible compiler infrastructure shared by both

academia and industry, aiming to improve the quality, practicality and reproducibility

of research, and make experimental results immediately useful to the community.
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The internal structure of ICI is shown in Figure 7. We separate ICI into two parts:

low-level compiler-dependent and high-level compiler independent, the main reason

being to keep high-level iterative compilation and machine learning plugins invariant

when moving from one compiler to another. At the same time, since plugins now extend

GCC through external shared libraries, experiments can be performed with no further

modifications to the underlying compiler.

External plugins can transparently monitor execution of passes or replace the GCC

Controller (Pass Manager), if desired. Passes can be selected by an external plugin

which may choose to drive them in a very different order than that currently used

in GCC, even choosing different pass orderings for each and every function in the
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program being compiled. This mechanism simplifies the introduction of new analysis

and optimization passes to the compiler.

In an additional set of enhancements, a coherent event and data passing mechanism

enables external plugins to discover the state of the compiler and to be informed as

it changes. At various points in the compilation process events (IC Event) are raised

indicating decisions about transformations. Auxiliary data (IC Data) is registered if

needed.

Using ICI, we can now substitute all default optimization heuristics with external

optimization plugins to suggest an arbitrary combination of optimization passes during

compilation without the need for any project or Makefile changes. Together with ad-

ditional routines needed for machine learning, such as program feature extraction, our

compiler infrastructure forms the Milepost GCC. We added a ’-Oml’ flag which calls a

plugin to extract features, queries machine learning model plugins and substitutes the

default optimization levels.

In this work, we do not investigate optimal orders of optimizations since that re-

quires detailed information about dependencies between passes to detect legal orders;

we plan to provide this information in the future. Hence, we examine the pass orders

generated by compiler flags during iterative compilation and focus on selecting or de-

selecting appropriate passes that improve program execution time, compilation time

or code size. In the future, we will focus on fine-grain parametric transformations in

MILEPOST GCC [49] and combine them with the POET scripting language [86].

4.3 Static program features

Our machine learning models predict the best GCC optimization to apply to an input

program based on its program structure or program features. The program features are

typically a summary of the internal program representation and characterize essential

aspects of a program that help to distinguish between good and bad optimizations.

The current version of ICI allows to invoke auxiliary passes that are not part of

GCC’s default compiler optimization heuristics. These passes can monitor and pro-

file the compilation process or extract data structures needed for generating program

features.

During compilation, a program is represented by several data structures, imple-

menting the intermediate representation (tree-SSA, RTL etc), control flow graph (CFG),

def-use chains, loop hierarchy, etc. The data structures available depend on the compi-

lation pass currently being performed. For statistical machine learning, the information

about these data structures is encoded in a constant size vector of numbers (i.e fea-

tures) — this process is called feature extraction and facilitates reuse of optimization

knowledge across different programs.

We implemented an additional ml-feat pass in GCC to extract static program

features. This pass is not invoked during default compilation but can be called using an

extract program static features plugin after any arbitrary pass, when all data necessary

to produce features is available.

In Milepost GCC, feature extraction is performed in two stages. In the first stage,

a relational representation of the program is extracted; in the second stage, the vector

of features is computed from this representation. In the first stage, the program is

considered to be characterized by a number of entities and relations over these entities.



15

ft1 Number of basic blocks in the method
ft2 Number of basic blocks with a single successor
ft3 Number of basic blocks with two successors
ft4 Number of basic blocks with more then two successors
ft5 Number of basic blocks with a single predecessor
ft6 Number of basic blocks with two predecessors
ft7 Number of basic blocks with more then two predecessors
ft8 Number of basic blocks with a single predecessor and a single successor
ft9 Number of basic blocks with a single predecessor and two successors
ft10 Number of basic blocks with a two predecessors and one successor
ft11 Number of basic blocks with two successors and two predecessors
ft12 Number of basic blocks with more then two successors and more then two predecessors
ft13 Number of basic blocks with number of instructions less then 15
ft14 Number of basic blocks with number of instructions in the interval [15, 500]
ft15 Number of basic blocks with number of instructions greater then 500
ft16 Number of edges in the control flow graph
ft17 Number of critical edges in the control flow graph
ft18 Number of abnormal edges in the control flow graph
ft19 Number of direct calls in the method
ft20 Number of conditional branches in the method
ft21 Number of assignment instructions in the method
ft22 Number of binary integer operations in the method
ft23 Number of binary floating point operations in the method
ft24 Number of instructions in the method
ft25 Average of number of instructions in basic blocks
ft26 Average of number of phi-nodes at the beginning of a basic block
ft27 Average of arguments for a phi-node
ft28 Number of basic blocks with no phi nodes
ft29 Number of basic blocks with phi nodes in the interval [0, 3]
ft30 Number of basic blocks with more then 3 phi nodes
ft31 Number of basic block where total number of arguments for all phi-nodes is in greater then 5
ft32 Number of basic block where total number of arguments for all phi-nodes is in the interval [1, 5]
ft33 Number of switch instructions in the method
ft34 Number of unary operations in the method
ft35 Number of instruction that do pointer arithmetic in the method
ft36 Number of indirect references via pointers (”*” in C)
ft37 Number of times the address of a variables is taken (”&” in C)
ft38 Number of times the address of a function is taken (”&” in C)
ft39 Number of indirect calls (i.e. done via pointers) in the method
ft40 Number of assignment instructions with the left operand an integer constant in the method
ft41 Number of binary operations with one of the operands an integer constant in the method
ft42 Number of calls with pointers as arguments
ft43 Number of calls with the number of arguments is greater then 4
ft44 Number of calls that return a pointer
ft45 Number of calls that return an integer
ft46 Number of occurrences of integer constant zero
ft47 Number of occurrences of 32-bit integer constants
ft48 Number of occurrences of integer constant one
ft49 Number of occurrences of 64-bit integer constants
ft50 Number of references of a local variables in the method
ft51 Number of references (def/use) of static/extern variables in the method
ft52 Number of local variables referred in the method
ft53 Number of static/extern variables referred in the method
ft54 Number of local variables that are pointers in the method
ft55 Number of static/extern variables that are pointers in the method
ft56 Number of unconditional branches in the method

Table 2 List of static program features currently available in Milepost GCC V2.1
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The entities are a direct mapping of similar entities defined by the language refer-

ence, or generated during compilation. Such examples of entities are variables, types,

instructions, basic blocks, temporary variables, etc.

A relation over a set of entities is a subset of their Cartesian product. The relations

specify properties of the entities or the connections among them. We use a notation

based on logic for describing the relations — Datalog is a Prolog-like language but with

a simpler semantics, suitable for expressing relations and operations upon them [83,

79].

To extract the relational representation of the program, we used a simple method

based on the examination of the include files. The main data structures of the compiler

are built using struct data types, having a number of fields. Each such struct data

type may introduce an entity, and its fields may introduce relations over the entity,

representing the including struct data type and the entity representing the data type

of the field. This data is collected by the ml-feat pass.

In the second stage, we provide a Prolog program defining the features to be com-

puted from the Datalog relational representation, extracted from the compiler’s internal

data structures in the first stage. The extract program static features plugin invokes

a Prolog compiler to execute this program, resulting in a vector of features (as shown

in Table 2) which later serves to detect similarities between programs, build machine

learning models and predict the best combinations of passes for new programs. We

provide more details about aggregation of semantical program properties for machine

learning based optimization in [68].

5 Using machine learning to predict good optimization passes

The Milepost approach to learning optimizations across programs is based on the obser-

vation that programs may exhibit similar behavior for a similar set of optimizations [17,

42], and hence we try to apply machine learning techniques to correlate their features

with most profitable program optimizations. In this case, whenever we are given a new

unseen program, we can search for similar programs within the training set and suggest

good optimizations based on their optimization experience.

In order to test this assumption, we selected the combination of optimizations which

yields the best performance for a given program on AMD, see reference in Figure 8.

We then applied all these “best” combinations to all other programs and reported the

performance difference, see applied to. It is possible to see that there is a fairly large

amount of programs that share similar optimizations.

In the next subsections we introduce two machine learning techniques to select

combinations of optimization passes based on construction of a probabilistic model or

a transductive model on a set of M training programs, and then use these models to

predict “good” combinations of optimization passes for unseen programs based on their

features.

There are several differences between the two models: first, in our implementation

the probabilistic model assumes each attribute is independent, whereas the proposed

transductive model also analyzes interdependencies between attributes. Second, the

probabilistic model finds the closest programs from the training set to the test program,

whereas the transductive model attempts to generalize and identify good combinations

of flags and program attributes. Therefore, it is expected that in some settings programs

will benefit more from the probabilistic approach, whereas in others programs will
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be improved more by using the transductive method, depending on training set size,

number of samples of the program space, as well as program and architecture attributes.

In order to train the two machine learning models, we generated 1000 random

combinations of flags turned either on or off as described in Section 3. Such a number

of runs is small relative to the size of the optimization space yet it provides enough

optimization cases and sufficient information to capture good optimization choices. The

program features for each benchmark, the flag settings and execution times formed the

training data for each model. All experiments were conducted using leave-one-out cross-

validation. This means that for each of the N programs, the other N − 1 programs are

used as training data. This guarantees that each program is unseen when the model

predicts good optimization settings to avoid bias.
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5.1 Probabilistic machine learning model

Our probabilistic machine learning method is similar to that of [17] where a probability

distribution over “good” solutions (i.e. optimization passes or compiler flags) is learnt

across different programs. This approach has been referred to as Predictive Search

Distributions (PSD) [23]. However, unlike prior work [17,23] where such a distribution

is used to focus the search of compiler optimizations on a new program, we use the

learnt distribution to make one-shot predictions on unseen programs. Thus we do not

search for the best optimization, we automatically predict it.
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Fig. 9 Euclidean distance for all programs based on static program features normalized by
feature 24 (number of instructions in a method).

Given a set of training programs T 1, . . . , TM , which can be described by feature

vectors t1 . . . , tM , and for which we have evaluated different combinations of optimiza-

tion passes (x) and their corresponding execution times (or speed-ups) y so that we

have for each program T j an associated dataset Dj = {(xi, yi)}N
j

i=1, with j = 1, . . .M ,

our goal is to predict a good combination of optimization passes x∗ minimizing y∗

when a new program T ∗ is presented.
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We approach this problem by learning a mapping from the features of a program

t to a distribution over good solutions q(x|t,θ), where θ are the parameters of the

distribution. Once this distribution has been learnt, prediction for a new program T ∗

is straightforward and is achieved by sampling at the mode of the distribution. In other

words, we obtain the predicted combination of flags by computing:

x∗ = argmax
x

q(x|t,θ). (1)

In order to learn the model it is necessary to fit a distribution over good solutions

to each training program beforehand. These solutions can be obtained, for example, by

using uniform sampling or by running an estimation of distribution algorithm (EDA,

see [55] for an overview) on each of the training programs. In our experiments we use

uniform sampling and we choose the set of good solutions to be those optimization set-

tings that achieve at least 98% of the maximum speed-up available in the corresponding

program-dependent dataset.

Let us denote the distribution over good solutions on each training program by

P (x|T j) with j = 1, . . . ,M . In principle, these distributions can belong to any para-

metric family. However, in our experiments we use an IID model where each of the

elements of the combination are considered independently. In other words, the proba-

bility of a “good” combination of passes is simply the product of each of the individual

probabilities corresponding to how likely each pass is to belong to a good solution:

P (x|T j) =

L∏
ℓ=1

P (xℓ|T j), (2)

where L is the length of the combination.

Once the individual training distributions P (x|T j) are obtained, the predictive

distribution q(x|t,θ) can be learnt by maximization of the conditional likelihood or

by using k-nearest neighbor methods. In our experiments we use a 1-nearest neigh-

bor approach (Figure 9 shows Euclidean distances between all programs with a visible

clustering). In other words, we set the predictive distribution q(x|t,θ) to be the dis-

tribution corresponding to the training program that is closest in feature space to the

new (test) program.

Figure 10 compares the speedups achieved after iterative compilation using 1000

iterations and 50% probability of selecting each optimization on AMD and Intel after

one-shot prediction using probabilistic model or simply after selecting best combina-

tion of optimizations from the closest program. Interestingly, the results suggest that

simply selecting best combination of optimizations from a similar program may not

perform well in many cases; this may be due to our random optimization space ex-

ploration technique - each “good” combination of optimizations includes multiple flags

that do not influence performance or other metrics on a given program, however some

of them can considerably degrade performance on other programs. On the contrary,

probabilistic approach helps to filter away non-influential flags statistically and thereby

improve predictions.

5.2 Transductive machine learning model

In this subsection we describe a new transductive approach where optimization com-

binations themselves are used, as features for the learning algorithm, together with
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Fig. 10 Speedups achieved when using iterative compilation on (a) AMD and (b) Intel with
random search strategy (1000 iterations; 50% probability to select each optimization;), when
selecting best optimization from the nearest program and when predicting optimization using
probabilistic ML model based on program features.

program features. The model is then queried for the best combination of optimizations

out of the set of optimizations that the program was compiled with. Many learning

algorithms can be used for building the ML model. In this work we used a decision

tree model [34] to ease analysis of the resulting model.

As in the previous section, we try to predict whether a specific optimization com-

bination will obtain at least 95% of the maximal speedup possible. The feature set

is comprised of the flags/passes and the extracted program features, obtained from

Milepost GCC. Denoting the vector of extracted features from the i-th program by

ti, i = 1, . . . ,M and the possible optimization passes by xj , j = 1, . . . , N , we train

the ML model with a set of features which is the cross-product of x × t, such that
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each feature vector is a concatenation of xj and ti. This is akin to multi-class methods

which rely on single binary classifiers (see [35] for a detailed discussion of such meth-

ods). The target for the predictor is whether this combination of program features and

flags/passes combination will give a speedup of at least 95% of the maximal speedup.

Once a program is compiled with different optimization settings (either an ex-

haustive sample, or a random sample of optimization combinations), all successfully

compiled program settings are used as a query for the learned model together with

the program features, and the flag setting which is predicted to have the best speedup

is used. If several settings are predicted to have the same speedup, the one which

exhibited, on average, the best speedup with the training set programs, is used.
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Fig. 11 Speedups achieved when using iterative compilation on ARC with random search
strategy (1000 iterations; 50% probability to select each optimization;) and when predicting
best optimizations using probabilistic ML model and transductive ML model based on program
features

Figure 11 compares the speedups achieved after iterative compilation using 1000 it-

erations and 50% probability of selecting each optimization on ARC and after one-shot

prediction using probabilistic and transductive models. It shows that our probabilistic

model can automatically improve the default optimization heuristics of GCC by 11%

on average while reaching 100% of the achievable speedup in some cases. On the other

hand, transductive model improves GCC by only a modest 5%. However, in several

cases it outperforms the probabilistic model: susan s, dijkstra, rijndael e, qsort1 and

strinsearch1 likely due to a different mechanism of capturing the importance of pro-

gram features and optimizations. Moreover, transductive (decision tree) model has an

advantage that it is much easier to analyze the results. For example, Figure 12 shows

the top levels of the decision trees learnt for ARC. The leafs indicate the probability

that the optimization and program feature combinations which reached these nodes will

be in the top 95% of the speedup for a benchmark. Most of these features found at the

top level characterize the control flow graph (CFG). This is somehow expected, since

the structure of the CFG is one of the major factors that may affect the efficiency of
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Fig. 12 Top levels of decision trees learnt for ARC.

several optimizations. Other features relate to the applicability of the “address-taken”

operator to functions that may affect the accuracy of the call-graph and of subsequent

analysis using it. To improve the performance of both models, we intend to analyze the

quality and importance of program features and their correlation with optimizations

in the future.

5.3 Realistic optimization scenario of a production application

Experimental results from the previous section show how to optimize several standard

benchmarks using Milepost GCC. In this section we show how to optimize a real pro-

duction application using Milepost technology combined with machine learning model

from Section 5.1. For this purpose, we selected the open-source Berkeley DB library

(BDB) which is a popular high-performance database written in C with APIs to most

other languages. For evaluation purposes we used an official internal benchmarking

suite and provided support of the CCC framework to perform iterative compilation

in a same manner as described in Section 3, in order to find the upper bounds for

execution time, code size and compilation time.
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Fig. 13 Execution time speedups (a), code size improvements (b) and compilation time
speedup (c) for BerkeleyDB on Intel when applying optimizations from 5 closest programs
from MiBench/cBench (based on Euclidean distance using static program features of 3 hottest
functions) using several optimization scenarios.

For simplicity, we decided to use a probabilistic machine learning model from Sec-

tion 5.1. Since BDB is relatively large (around 200,000 lines of code) we selected the

3 hottest functions, extracted features for each function using Milepost GCC and cal-

culated Euclidean distance with all programs from our training set (MiBench/cBench)

to find the five most similar programs. Then, depending on the optimization scenario,

we selected the best optimizations from those programs to (a) improve execution time

while not degrading compilation time (b) improve code size while not degrading ex-

ecution time and (c) improve compilation time while not degrading execution time.

Figure 13 shows the achieved execution time speedups, code size improvements and

compilation time speedups over -O3 optimization level when applying selected opti-
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mizations from the most similar programs to BerkeleyDB for these three optimization

scenarios. These speedups are compared to the upper bound for the respective metrics

achieved after iterative compilation (200 iterations) for the whole program. The pro-

grams on the X-axis are sorted by distances starting from the closest program. In the

case of improving execution time, we show significant speedup across the functions.

For improving compilation time we are far from the optimal solution because it is nat-

urally associated with the lowest optimization level, while we have been focusing also

on not degrading execution time of -O3. Overall, the best results were achieved when

applying optimizations from tiff programs that are closer in the feature space to the

hot functions selected from BerkeleyDB, than any other program of the training set.

We added information about the best optimizations from these 3 optimization

scenarios to the open online Collective Optimization Database [3] to help users and

researchers validate and reproduce such results. These optimization cases are ref-

erenced by the following cTuning RUN ID reference numbers: 24857532370695782,

17268781782733561 and 9072658980980875. The default run related to -O3 optimiza-

tion level is referenced by 965827379437489142. We also added support for pragma

#ctuning-opt-case UID that allows end-users to explicitly force Milepost GCC to

connect combinations of optimizations found by other users during empirical collective

search and referenced by UID in COD to a given code section instead of using machine

learning.

6 Related work

Automatic performance tuning techniques are now widely adopted to improve different

characteristics of a code empirically. They search automatically for good optimization

settings, applying multiple compilations and executions of a given program while re-

quiring little or no knowledge of the current platform, so programs can be adapted to

any given architecture. Originally developed to improve performance of various small

kernels using a few parametric transformations across multiple architectures, where

static compilers fail to deliver best performance [84,53,63,71,81,21,85], these tech-

niques have been extended to larger applications and richer set of optimizations [22,

52,29,54,31,77,37,32,59,70,86,6,14,78].

Though popular for library generators and embedded systems, iterative compilation

is still not widely adopted by general purpose compilers mainly due to excessively long

optimization time. Multiple genetic and probabilistic approaches have been developed

to speed up optimization of a given program on a given architecture [69,30,73,46,19,

47,36]. Furthermore, novel dynamic and hybrid (static and dynamic) adaptation tech-

niques have been proposed to speed up evaluation of optimizations at run-time [80,57].

In [40], we have shown the possibility to speed up iterative compilation by several or-

ders of magnitude using static function cloning with pre-optimized versions for various

objectives and run-time low-overhead optimization evaluation that also enabled adap-

tive binaries reactive to run-time changes in the program and environment. In [37,41],

we introduced a new technique to quickly detect realistic lower bound of the execution

time of memory intensive applications by converting array accesses to scalars in vari-

ous ways without preserving the semantics of the code to quickly detect performance

anomalies and identify code sections that can benefit from empirical optimizations. All

these techniques can effectively learn the optimization space of an individual program
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and optimization process but they still do not learn optimizations across programs and

architectures.

Calder et al. [25] presented a new approach to predict branches for a new program

based on behavior of other programs. They used neural networks and decision trees to

map static features associated with each branch to a prediction that the branch will

be taken, and managed to slightly reduce the branch misprediction rate on a set of

C and Fortran programs. Moss and McGovern et al. [67,64] incorporated a reinforce-

ment learning model with a compiler to improve code scheduling, however no absolute

performance improvements were reported. Monsifrot et al. [66] presented a classifier

based on decision tree learning to determine which loops to unroll. Mark Stephenson

and Saman Amarasinghe [72] also predict unroll factors using nearest neighbor classi-

fication and support vector machines. In our previous work [17,26] we used static or

dynamic (performance counters) code features with SUIF, Intel and PathScale com-

pilers to predict a set of multiple optimizations that improve execution time for new

programs based on similarities between previously optimized programs. Liao et al. [82]

used machine learning to performance counters and decision trees to choose hard-

ware prefetcher configurations. Several researchers [24,58,62] attempted to characterize

program input in order to predict best code variant at run-time using several machine

learning methods, including automatically generated decision trees and statistical mod-

eling. Other works [50,48,33] used machine learning for performance prediction and

hardware-software co-design.

Though machine learning techniques demonstrate a good potential to speed up the

iterative compilation process and facilitate reuse of optimization knowledge across dif-

ferent programs and architectures, the training phase can still be very long. Techniques

for continuous optimization can effectively speed up training of machine learning mod-

els. Anderson et al. [18] presented a practical framework for continuous and transparent

profiling and analysis of computing systems, though unfortunately this work did not

continue and no machine learning has been used. Lattner and Adve [56] and Lu et

al. [61] describe frameworks for lifelong program optimization, but without providing

details on practical collection of data and optimization strategies across runs. Other

frameworks [20,74] can collect profile information across multiple runs of users and

continuously alter run-time decisions in Java virtual machines, while we focus on pro-

duction static compilers and predictive modeling to correlate program features with

program optimizations. In previous work [38,42] we presented an open source frame-

work for statistical collective optimization that can leverage experience of multiple

users with static compilers and collect run-time profile data transparently in an open

public database for further machine learning processing. In [42], we also presented a

new technique to characterize programs based on reaction to transformations, which

can be an alternative portable approach to program characterization using static or

dynamic program features.

We found many of the above approaches highly preliminary, limited to a few trans-

formations and global flags, rarely with publicly released open source tools or exper-

imental data to reproduce results. In contrast, the main goal of the Milepost project

is to make machine learning based multi-objective optimization a realistic, automatic,

reproducible and portable technology for general-purpose production compilers.
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7 Conclusions and future work

The main contribution of this article is the first practical attempt to move empir-

ical multi-objective iterative optimization and machine learning research techniques

into production compilers, deliver open collaborative R&D infrastructure based on the

popular GCC compiler and connect it to the cTuning.org optimization repository to

help end-users optimize their applications and allow researchers to reproduce and im-

prove experimental results. We show that Milepost GCC has a potential to automate

the tuning of compiler heuristics for a wide range of architectures and multi-objective

optimization such as improving execution time, code size, compilation time and other

constraints while considerably simplifying overall compiler design and time to market.

We released all Milepost/cTuning infrastructure and experimental data as open

source at cTuning.org [10,4,5] to be immediately useful to end users and researchers.

We hope that Milepost GCC connected to cTuning.org’s public collaborative tools and

databases with common API will open many new practical opportunities for systematic

and reproducible research in the area of empirical multi-objective optimization and

machine learning. Some of Milepost’s technology is now included in mainline GCC.

We continue to extend the Interactive Compilation Interface [8,49] to abstract

high-level optimization processes from compiler internals and provide finer grain tuning

for performance, power, compilation time and code size. We also expect to combine

ICI with the POET scripting language [86] and pragmas to unify fine-grain program

tuning. Future work will connect LLVM, ROSE, Path64 and other compilers to our

framework. We are also integrating our framework with the collective optimization

approach [42] to reduce or completely remove training stage overheads with limited

benchmarks, architectures and datasets. Collective optimization also allows to define

truly representative benchmarks based on classical clustering techniques.

Our framework now facilitates deeper analysis of interactions among optimiza-

tions and investigation of the influence of program inputs and run-time state on pro-

gram optimizations in large applications. We also extend Milepost/cTuning technology

to improve machine learning models and analyze the quality of program features to

search for optimal sequences of optimization passes or polyhedral transformations [59,

78]. We started combining Milepost technology with machine-learning based auto-

parallelization and predictive scheduling techniques [60,51,76]. We have also started

investigating staged compilation techniques to balance between static and dynamic

optimizations using machine learning in LLVM or Milepost GCC4CIL connected to

Mono virtual machine. We plan to connect architecture simulators to our framework

to enable software and hardware co-optimization. Finally, we will investigate adap-

tive and machine learning techniques for parallelization on heterogeneous multi-core

architectures and power saving prediction for large data centers and supercomputers.
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