
Fast Compiler Optimisation Evaluation Using Code-Feature
Based Performance Prediction

Christophe Dubach, John Cavazos,
Björn Franke, Michael O’Boyle

Member of HiPEAC
Institute for Computing Systems Architecture,

University of Edinburgh, UK

Grigori Fursin and Olivier Temam
Member of HiPEAC
ALCHEMY Group

INRIA Futurs and LRI, ParisSud University,
France

ABSTRACT
Performance tuning is an important and time consuming
task which may have to be repeated for each new application
and platform. Although iterative optimisation can automate
this process, it still requires many executions of di�erent ver-
sions of the program. As execution time is frequently the
limiting factor in the number of versions or transformed pro-
grams that can be considered, what is needed is a mechanism
that can automatically predict the performance of a modi-
�ed program without actually having to run it. This paper
presents a new machine learning based technique to auto-
matically predict the speedup of a modi�ed program using a
performance model based on the code features of the tuned
programs. Unlike previous approaches it does not require
any prior learning over a benchmark suite. Furthermore, it
can be used to predict the performance of any tuning and
is not restricted to a prior seen transformation space. We
show that it can deliver predictions with a high correlation
coe�cient and can be used to dramatically reduce the cost
of search.

Categories and Subject Descriptors
D.3 [Software]: Programming languages; D.3.4 [Program-
ming languages]: Processors�Compilers, Optimization ;
I.2.6 [Arti�cial intelligence]: Learning�Induction

General Terms
Performance, Experimentation, Languages

Keywords
Performance Modelling, Compiler optimisation, Architec-
ture, Machine learning, Arti�cial Neural Networks

1. INTRODUCTION
Tuning applications to improve performance is an impor-

tant but tedious and time consuming task. For performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005 ...$5.00.

critical applications such as those found in embedded de-
vices, it has to be performed for each new application and
each new platform. The programmer has to, �rst of all, make
a potentially bene�cial program modi�cation, then compile
it, before �nally executing the new program and recording
its execution time. This modify-compile-execute cycle must
be repeatedly performed until a su�cient performance gain
is achieved or the programmer has run out out time.
There has been much work in the area of iterative opti-

misation aimed at automating this process [23, 12, 7, 16,
20, 10, 11]. Such approaches focus on choosing good pro-
gram modi�cations or transformations so that the number
of modify-compile-execute cycles is reduced. Although it is
possible to �nd good performance improvement automati-
cally, iterative optimisation still requires many executions
of di�erent versions of the program. As execution time
is frequently the limiting factor in the number of versions
or transformed programs that can be considered, what is
needed is a mechanism that can automatically predict the
performance of a modi�ed program without actually having
to run it. Ideally, such a predictor would be independent of
platform, program and most importantly not be restricted
to certain classes of program modi�cations. Such a scheme
would allow many di�erent versions to be rapidly evaluated,
dramatically reducing the time to produce a tuned appli-
cation. Alternatively, for the same amount of time, many
more program versions could be considered and increased
performance achieved.
This paper presents a new technique to automatically pre-

dict the speedup of a modi�ed program using a performance
model based on the code features of the tuned programs. To
build such a model, we �rst randomly transform the program
to be tuned and run it on the target platform a number of
times. The code features of the modi�ed programs plus their
execution time are then used for training a machine learning
based model. This learnt model is then able to predict the
speedup of any new modi�ed version of the program with-
out executing it. Unlike previous work [5] it does not need
to run an extensive training suite of benchmarks to build
a predictor, it only needs a few runs of the program to be
tuned. Nor is it limited to a �xed pre-examined transfor-
mation space as is the case of the reactions-based model [5].
Instead, because it uses features of the code, it can predict
the performance of any modi�cation of the program.
In this paper we show that we are able to e�ectively pre-

dict the performance of a large number of tuned programs
with few samples. Using just 16 samples we can predict the
performance of 88000 modi�cations with a correlation coef-

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7
sp

ee
du

p

sequences

compress

Real speedups
Features predictor

Mean predictor

Figure 1: Optimisation space of the compress pro-
gram. The x-axis represents the 88000 transformed
versions of the program sorted in order of increas-
ing speedup. The y-axis denotes the speedup value
of the corresponding transformed program over the
original program. The curve labelled Real speedup
denoted the actual performance while the curve la-
belled Features predictor is the predicted value of
our feature-based scheme using 64 evaluations of
randomly transformed programs.

�cient of 0.65. With 128 samples, this rises to 0.8 - a highly
accurate predictor. Furthermore, we show that this tech-
nique can be used to guide an iterative optimisation process
to help selecting those transformations likely to give good
performance four times faster than random search.
While the focus of this paper is in using prediction to avoid

execution on a new platform, it has much wider potential
application. The ability to automatically predict program
performance is particularly worthwhile in the early stages of
processor design. Typically, simulators are used as they al-
low easy exploration of di�erent con�gurations at the cost of
drastically increased execution time. The overhead of sim-
ulation makes program tuning prohibitively expensive until
the actual hardware is available. If we were able to build an
accurate performance predictor, it would overcome the cost
of simulation allowing programs and processor architecture
co-design.
The paper is structured as follows: a motivation exam-

ple is �rst provided in Section 2 illustrating the bene�ts of
using a performance predictor. It shows that a simple er-
ror metric is a poor measure for performance prediction and
shows how the correlation coe�cient is a better �t. Sec-
tion 3 brie�y describes the various models and predictors
evaluated in this paper. This is followed by Section 4 which
describes in some detail, the program features that are used
to build our models. Section 5 describes the experimental
setting used in Section 6 to evaluate the di�erent models
and predictors. As one of the main bene�ts of this approach
is it ability to predict the performance on unseen transfor-
mations, Section 7 shows how the predictor can be used to
select good versions of a program in unseen transformation
spaces. This is followed by a brief review of related work in
Section 8 and �nally, Section 9 concludes this paper.

2. MOTIVATION
This section illustrates how our predictor can be used to

estimate the speedup of di�erent versions of a program and
describes ways in which its accuracy may be evaluated.
We want to compare the predicted performance of di�er-

ent versions of a program against their actual values. In
order to give a realistic evaluation, rather than evaluating a
few hand-tuned versions, we automatically generated many
di�erent program versions using combinations of the 13 dif-
ferent program transformations, listed in Table 3. We re-
stricted our attention to sequences of these transformations
of up to length 5 giving 88000 di�erent program versions
(see Section 5 for further details).
Each of these transformation sequences was applied to

the UTDSP [18] program compress and ran on an embed-
ded platform, the Texas Instrument C6713 clustered VLIW
processor. The results of applying each of the transforma-
tion sequence is shown in Figure 1 where the curve labelled
Real speedups is the actual speedup achieved when various
transformations or tunings are applied to compress. The
y-axis is the speedup obtained after applying a transforma-
tion sequence, and the x-axis is simply the transformation
sequences sorted by increasing actual speedup. Most ver-
sions of the program give a speedup with the best achieving
1.66.
We want to build a predictor that can predict this be-

haviour based on a small number of program executions or
samples. In this example, we randomly generated 64 trans-
formed programs and executed them in order to build a
predictor that was able to predict the remaining points in
the space. The performance prediction of our scheme is
shown by the line labelled Features predictor. As it is vi-
sually apparent, our model is able to fairly accurately predict
the performance of this program when applied to di�erent
transformation sequences. It requires runs of just 64 ran-
domly generated transformation sequences of the program
to learn a model. This represents less than 0.1% of the whole
space. This model can then predict the performance of the
remaining 88000 − 64 transformation sequences applied to
that program. At �rst, it may be surprising that such a
small training set size is su�cient to capture such a huge
space. However, transformed programs have large areas of
similar behaviour which can be captured in a few trials. Fur-
thermore, as we use code features, the model automatically
determines which �performance region� a transformed code
belongs to.

2.1 Mean predictor and mean absolute error
Although our scheme appears to perform well, it is impor-

tant to have a fair comparison with a default scheme in order
to evaluate the predictions. The simplest naive scheme is one
which always predicts the same speedup for all transforma-
tions based on the average value of any transformed pro-
gram. If we perform such an experiment frequently enough,
such a naive predictor will always predict the mean value of
the space and thus is called the mean predictor. Its predic-
tions are shown with the line labelled Mean predictor on
Figure 1.
The role of the mean predictor becomes apparent once we

consider metrics to quantify the quality of our predictions.
A commonly accepted metric is the mean absolute error :
mae =

PN
i=1|predicted valuei−real valuei|

N
where N represents

the total number of observed values. In Figure 2(a) the
mae of our predictor is compared with that of the mean
predictor and plotted as a function of the number of runs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6 7 8 9

m
ae

sample size (power of 2)

features predictor
mean predictor

(a) Mean absolute error.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

co
rr

el
at

io
n

sample size (power of 2)

features predictor
mean predictor

(b) Correlation coe�cient.

Figure 2: Evaluation of the performance of the pre-
dictors for the compress program. The sample size
is a logarithmic scale (21, . . . , 29) and represents the
number of executions of di�erent versions of the
compress program, or training data, needed to train
each model. Both models have been trained 50 times
using di�erent random training samples. The values
shown are thus averaged.

used to build the model. While our model improves with
the number of runs, both the predictors exhibit similar mae.
However, we know from Figure 1 that the mean predictor
is poor at performance prediction and does not distinguish
between di�erent versions of the program.
In fact, the mae of the mean predictor gives information

about the variance of the space (formally, the variance of the
space is equal to the mean squared error, which is strongly
related to the mae).

2.2 Correlation coefficient
Although mae gives some insight into the accuracy of a

predictor, it is not good at distinguishing between good and
poor versions of a program. To evaluate the quality of the
predictor, we therefore chose to use the correlation coe�-
cient. This metric, explained in Section 6.1, takes a value
between 0 and 1 (neglecting the sign). The closer to 1 this
value is, the better the predictor is. Figure 2(b) shows the

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

evaluations

pred 8
random

Figure 3: Searching the large space of the compress
program. The x-axis represents the number of eval-
uations or executions of transformed versions of the
program. The y-axis shows the amount of perfor-
mance improvement achieved. Pred 8 is a search us-
ing a features-based model which has 8 prior train-
ing evaluations. Random denotes a simple random
search.

correlation coe�cient for our feature-based predictor and for
the mean predictor. The mean predictor has a correlation
of 0, meaning that it is unable to predict the shape of the
curve, while our predictor is able to improve its accuracy as
the number of training samples is increased. The scale is
logarithmic, so point 6 represents 26=64 sample runs with
a correlation coe�cient of 0.85 - a very accurate predictor.
The detailed performance of this particular version of the
predictor has already been shown in Figure 1. The correla-
tion coe�cient is therefore a good metric since it allows us
to quantify in a single number how well the predicted values
follow the real speedups.

2.3 Using the predictor to find good points
Another way of evaluating the quality of our predictor is to

use it to search for good optimisation points in a previously
unseen transformation space. In other words, how well does
it predict the performance of programs transformed in a
manner it has never seen before, and how can that be used
to guide the search for good optimisations.
Figure 3 shows how random search and our predictor per-

form when searching a new optimisation space. This new
space contains transformation sequences of length 20 se-
lected from up to 54 transformations, which we refer to as
the large space (see Table 4 for further details). The random
search is performed by randomly selecting a transformation
sequence in the space and by running the resulting program.
This is repeated 100 times and the best transformation se-
quence found so far is kept.
The curve labelled pred 8 shows the performance of our

predictor built using just 8 samples from the small 88000 ele-
ment space shown in Figure 1. It is used as follows: initially
500 random points are selected but not executed from the
new space (1034 di�erent sequences; described in Section 7)
and their code features extracted. We refer to this space
as the large space. The predictor then ranks those sam-
ples based on their predicted performance. Figure 1 shows
that the predictor is not accurate in determining the abso-

Figure 4: Training and using the features-based pre-
dictor. During the training phase, a set of trans-
formation sequences is applied to the original C
program. Then pairs of features/speedup values
are gathered; the features are extracted and the
transformed programs are executed. Those pairs
of values compose the training set and are used to
train the model using an iterative process. Once
the model is trained, it can be used to predict the
speedup of a new transformation; features are ex-
tracted from the new transformed program and used
as an input to the model.

lute best performing option, but is good at identifying good
candidates. So the prediction based search pred 8 starts ex-
ecuting the version with the best predicted execution time,
then the second best, and so on, up to 100 times.
It is interesting to notice that using this scheme with the

mean predictor results in random search; the mean predictor
assumes all versions are equally good (same prediction) and
hence randomly selects. As it can be seen in Figure 3, our
features-based predictor dramatically outperforms random
search.
The predictor used to search the new space has been

trained using only 8 samples from the small and di�erent
space, but it is still useful to search a space of transforma-
tion sequences never seen before unlike previous approaches
[5]. This example illustrates one way in which the model
can be used for performance tuning.

3. LEARNING A PREDICTIVE MODEL
In this section we describe our approach to building an

accurate predictor using a small number of runs of the trans-
formed program and their associated code features. Other
approaches are also considered and later used for compara-
tive evaluation in Section 6.

3.1 Features-based predictor
Figure 4 shows how the features based predictor is trained

and used. During training, a set of randomly selected trans-
formation sequences (T1, . . . , TN) is applied to the target
C program. From the resulting transformed programs, the
features are extracted and the speedup values are collected
after running those programs. This creates a set of pairs
< codefeatures, speedup > that are used to train the model.
Once the model has been trained, any new transforma-

tion sequence (Tnew) can be applied to the program. The
features of the new program are then extracted and fed into
the model which provides a prediction of its speedup. Un-
like the reaction based approach techniques [5], we do not

need to train on a prior benchmark suite, instead we sim-
ply use code features of the transformed program to predict
performance. The type of code features used, is described
in detail in Section 4.
The above description gives a summary of the overall ap-

proach. However, given the < codefeatures, speedup >
pairs, there are a number of modelling approaches that can
be considered for building a predictor. We consider two of
the simplest schemes.

Linear model.
Linear regression is one of the basic models that is of-

ten uses in statistic. It makes prediction by computing a
weighted sum of the input variables. The weights are de-
termined by minimising the mean squared error from the
training set. The advantage of this method resides in it's
simplicity; the problem of �nding the optimal weights is
simply reduced to a few matrix operations and once the
optimal weights (ω1, . . . , ωN) are computed, the prediction
can be made with a simple weighted sum of the inputs
(feat1, . . . , featN) : speedup =

PN
i=1 ωi ·feati. Its perfor-

mance is evaluated in Section 6.

Artificial neural network model.
The second model is our preferred model and is an ANN

(Arti�cial Neural Network [3]). Its main advantage over the
linear regressor is that it can model a non-linear space. Our
ANN is a multi-layer perceptron which has one hidden layer
that contains 1 to 5 hidden neurons (weights). The standard
back-propagation algorithm is used to train the ANN.

3.2 Non-feature-based alternative predictors
We compare our model against the mean predictor, the

sequence encoding-based predictor and the reactions-based
approach, neither of which use code features.

Mean predictor.
Introduced in Section 2, the mean predictor acts as our

baseline predictor. It does not use any features at all and
always predicts the mean of the points that it has sampled.
This value, computed from the training set, tends towards
the mean of the space when enough samples are taken from
the space. The mean of the space is the constant value
that minimises the mean absolute error mae and, therefore,
makes a good base case predictor.

Sequence encoding-based predictor.
This approach, similar to our code feature-based predic-

tor uses a vector of bits that encodes the sequence of trans-
formations instead of program features as an input to the
model. The chosen encoding does not take into account the
ordering of the transformations, but simply the presence of
a given transformation in the sequence.

Reaction-based predictor.
The last predictor considered is the reaction-based scheme

described in [5]. Like the previous predictor, it directly uses
the sequence of transformations applied to a program as an
input to a learnt model [5]. In addition to this, it uses a sig-
nature of the program as an input. This signature, referred
as reactions, corresponds to the speedups obtained when
some prede�ned sequences of transformations have been ap-

Label computation operations
LDC Load a constant value
CVT Conversion between �oat/int
LOD Load from memory
STR Store to memory
MBR Multi-way branch
CMPI/CMPF Comparison using int/�oat
UJMP/CJMP Unconditional/Conditional jump
CPY Copy
SFT Shift
ROT Rotation
ARII/ARIF Arithmetic operation on int/�oat
MULI/MULF Multiplication on int/�oat
DIVI/DIVF Division on int/�oat
LOG Logical operation
CAL Function call
ARYI/ARYF Array accesses on int/�oat
MEM Memory operation
AREF Array reference
RET Return from function
Label address computation operations
ARYLDC load a constant value
ARYCVT conversion between �oat/int
ARY... ...
Label control-�ow operations
LOOP_BODY While loop body
LOOP_TEST While loop test
FOR For loop
IF If-then-else statement

Table 1: The 3 categories of operations consid-
ered for features extraction; computation opera-
tions, memory access computations and control-�ow
operations.

plied to the program. This characterises the behaviour of
the program. The major di�erence with all the other pre-
dictors presented in this paper is that it requires extensive
prior training on a benchmark suite. In e�ect, it builds a
model correlating transformation sequences with speedup.
It has been shown to work well and is straightforward to
use.

4. SOURCE CODE FEATURES
The main distinctive characteristic of our methodology

is the use of program features as a mean of building accu-
rate performance models. This section describes how the
essential program characteristics or features are extracted
from a transformed program in order to build the features-
based models. Since these features are extracted at the
source level, they are platform independent, unlike other
approaches. Having the right features is critical for perfor-
mance accuracy. The following sections describe and provide
justi�cation for our selection.

4.1 Description of the features
The feature categories that summarise and characterise

a program are derived from high-level information describ-
ing the operations within a program. Those operations
can be classi�ed into three categories and are shown in Ta-
ble 1 which roughly correspond to computation, address and
control-�ow operations. Since our features are extracted us-
ing the SUIF infrastructure [13], the operations considered
are simply based on the intermediate representation used
within SUIF.

Classes of features.
We use four separate classes of features based on the three

di�erent categories of high-level operations to characterise a
program as shown in Figure 5. These features are consid-
ered to be good predictors of a program's performance. The

Figure 5: The four class of features that represent
the factors that in�uence performance.

Figure 6: Pro�ling information extraction.

feature class that characterises code size is determined by
simply counting the number of occurrence of each operation
in the program. The second class, is derived by counting the
number of operations executed using once-only pro�ling in-
formation of the original non-transformed program (see the
next section for further detail). To characterise the level of
parallelism available (the third feature class) we assume an
ideal machine that can execute each operation in one cycle
with unlimited resources. Given the pro�ling information,
the total number of cycles required to execute the program
is quickly approximated. Finally, we estimate the number
of distinct memory accesses statically from the source code.
These 4 feature classes are easy to determine and provide a
signature of the program's behaviour.

Relative features.
As we are interested in speedup relative to the original

program, we need to record the di�erence between the fea-
tures of the baseline and transformed program. Therefore
the feature vector is extracted by taking the relative dif-
ference between the features of the baseline and the trans-
formed program. the elements of the feature vector are thus
normalised. Elements that contain null values mean that the
corresponding features of the original code and the trans-
formed code are the same.

4.2 Extracting execution frequency
Certain features cannot be determined statically. For in-

stance, the number of iterations of a loop might be unknown

Program maximum speedup
adpcm 1.31643
compress 1.64141
edge detect 1.29729
�t 1.82053
�r 1.84127
histogram 1.00001
iir 2.04555
lms�r 1.00396
lpc 1.12012
spectral estimation 1.09078

Table 2: Programs used in our experiment and the
corresponding maximum speedup available in the
small space.

hence pro�ling information is used to determine the execu-
tion frequency of each basic block. The extraction of this
information is summarised in Figure 6.
Counters are inserted into the original C source code for

each dynamic control-�ow structure and pro�le information
is collected when the original program is �rst run; it has
negligible overhead. This is in fact very similar to the micro-
pro�ler developed in [17]. The original program is then an-
notated with this information, so that the information is
available to any subsequent transformations. When a trans-
formation is applied, the pro�ling information is updated
deterministically. This way we are able to extract accurate
features from any subsequent modi�ed version, without af-
fecting program behaviour.

4.3 Reduction of dimensionality
The total number of features extracted per C program is

118, which means that our model should have 118 inputs.
Unfortunately, in an ANN, every input corresponds to a
neuron. Since the number of free parameters increase with
the number of neurons, we need to keep this number small.
The �rst step consists in removing redundant features.

For instance �oating point operations can be dropped if the
program does not perform any �oating point operation. This
�ltering is done automatically when the model is trained,
leaving on average 35 features. The resulting features will
thus be speci�c for each program (but stay the same accross
the di�erent versions of the same program).
To further reduce the number of inputs, we apply a well

known technique called PCA (Principal Components Anal-
ysis). PCA [3] is a linear transformation that transforms
the data into a new coordinate system such that the great-
est variance by any projection of the data comes to lie on
the �rst coordinate (called �rst principal component), the
second greatest on the second coordinate, and so on. In our
setup, we keep only the main components that account for
95% of the total variance. In our case, the number of inputs
is typically reduced to 5 using this technique.

5. EXPERIMENTAL SETUP
This section provides a brief description of the programs,

transformations and platforms used in our evaluation.

Benchmarks.
The UTDSP [18, 21] benchmark suite contains small, but

compute-intensive DSP kernels as well as larger applications
composed of more complex algorithms. The size of programs
ranges from 20 to 500 lines of code. The programs used,
listed in Table 2, represent widely used compute-intensive
kernels from embedded applications.

Transformation
Loop unrolling (factor 1,2,3,4)
FOR loop normalisation
Non-perfectly nested loop conversion
Break load constant instructions
Common subexpression elimination
Dead code elimination
Hoisting of loop invariants
IF hoisting
Move loop-invariant conditionals
Copy propagation

Table 3: The 13 transformations used to generate
the 88000 versions of each program.

Despite the fact that those programs are relatively small
compare to other benchmark suites, our approach can still
be used on bigger programs. Bigger programs can be op-
timised locally, for instance on a per-function basis, and a
predictor built for each individual function.

Transformations.
We consider source-to-source transformations available in

the restructuring compiler SUIF 1 [13]. We have selected the
transformations described in Table 3. As we (arbitrarily)
consider four loop unroll factors, this increases the number
of transformations considered to 13. We then exhaustively
evaluated all transformations sequences of length 5 selected
from these 13 options. There are 154440 possible transfor-
mation sequences since no transformation can appear twice
in the sequence. However, since unrolling can only appear
once in any sequence (only one possible unroll factor), it de-
creases the total number of possible sequences we evaluated
to 88000 per benchmark.

Platform.
The Texas Instrument C6713 is a high-end �oating point

DSP, running at 300MHz. This wide-clustered VLIW pro-
cessor has 256KB of internal memory. The programs were
compiled using the TI's Code Composer Studio Tools Ver-
sion 2.21 compiler with the highest -O3 optimisation level
and -ml3 �ag (generates large memory model code).

Statistical significance.
Training involves randomly selecting samples from the

88000 possible transformation sequences. In order to get
a statistically signi�cant behaviour, we repeat this sampling
50 times. Thus, for each sample size, we show the aver-
age result over the 50 trials and, where appropriate, record
the standard deviation. In addition to the training set, we
need one execution of the baseline program to compute the
relative speedups of subsequent transformations.

6. EXPERIMENTAL RESULTS
In this section we compare the quality of our scheme using

the di�erent models proposed in Section 3.1 and against the
di�erent regressors described in Section 3.2.

6.1 Correlation coefficient
As shown in the motivation section, mae, though an im-

portant metric, is not a good measure at predicting the right
shape or trend of the space. As we want to use the pre-
dictor to discriminate between good and bad transformed
programs, we need a metric that captures the modelling ac-
curacy of the shape of the space.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

sample size (power of 2)

Coefficient of correlation

Mean predictor
adpcm

compress
edge detect

fft
fir

histogram
iir

lmsfir
lpc

spectral est.

Figure 7: The correlation coe�cient of the Features
ANN predictor with 5 hidden neurons. Correlation
is plotted as a function of the training set size (log-
arithmic scale) on a per program basis. The mean
predictor has constant 0 correlation.

To analyse the quality of our models, we therefore use the
correlation coe�cient. The correlation between two vari-
ables is de�ned as ρX,Y = cov(X,Y)

σX ·σY
, where σX and σY repre-

sent the standard deviation of variable X and Y respectively,
and cov(X, Y) is the covariance of variable X and Y . The
correlation coe�cient only takes values between -1 and 1.
The larger this value is, the stronger the relation between
the two variables is (ignoring the sign). At the extreme,
a correlation of 1 means that both variables are perfectly
positively correlated; one variable can be expressed as the
product of the other one (linear relation). A correlation of
0 means that there is no linear relationship between the two
variables.
Figure 7 shows how this coe�cient varies with the num-

ber of runs used to train the model for each program. The
model used here is the features-based model using 5 hid-
den neurons, since it leads to the best average performance
as we will see in the next section. Each line corresponds
to a particular program and each point on that line corre-
sponds to the correlation coe�cient for a given training set
size. The x-axis is a logarithmic scale and given su�cient
(29 = 512) training data, our predictor performs extremely
well in all cases except adpcm. Even with smaller training
sets (26 = 64) our scheme still performs well, with an av-
erage correlation coe�cient of .75. As expected the mean
predictor performs badly across all benchmarks and is un-
suitable as a means of distinguishing between fast and slow
versions of the program.

6.2 Comparison of models
The previous section shows that our scheme performs well

requiring only a few program runs plus the associated pro-
gram features to accurately predict the performance of a
large number of program variants. In this section we evalu-
ate the di�erent models proposed in Section 3.1.
Consider the diagram in Figure 8(a) which shows the cor-

relation coe�cient for each of the di�erent models. Each line
represents the performance of a particular model averaged
across the entire benchmark suite. As before, each point
describes the correlation coe�cient for a particular train-
ing set size (logarithmic scale). The Features ANN based

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9

sample size (power of 2)

Correlation

Features ANN h5
Features ANN h3
Features ANN h1

Features Linear

(a) Correlation coe�cient.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

sample size (power of 2)

Standard deviation of the correlation

Features ANN h5
Features ANN h3
Features ANN h1

Features Linear

(b) Standard deviation of the correlation coe�cient.

Figure 8: Correlation coe�cient and its standard de-
viation for the di�erent features-based models, aver-
aged across all benchmarks (50 runs per program),
as a function of the training set size (logarithmic
scale).

approaches outperform linear regression for small sample
sizes, while linear regression improves in performance when
it has greater than 25 = 32 training runs. However, the
best feature based scheme across the entire training set size
is the one using the ANN with 5 hidden neurons. With
enough samples in the training set, the correlation coe�-
cient is greater than 0.8 across all benchmarks showing that
this model is working extremely well.
Given that each of these models is based on random sam-

ples from the transformation space (to build the training
set), it is useful to know the standard deviation of each of
the predictors. Clearly having a volatile predictor is not very
useful. Figure 8(b) shows this standard deviation for vary-
ing training sample sizes (logarithmic scale). All schemes
show decreasing standard deviation with increased sample
size as expected. Again the ANN model that uses 5 hidden
neurons outperforms all the other models with the smallest
standard deviation.

6.3 Comparison of predictors
Figure 9 shows the comparison of our features-based pre-

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9

sample size (power of 2)

Correlation

Features ANN h5
Sequence ANN h5
Reactions ANN h5

Mean predictor

Figure 9: Comparison of the di�erent predictor av-
eraged across all benchmarks. The correlation co-
e�cient as a function of the training set size (loga-
rithmic scale).

dictor against the other predictors. As expected, the mean
predictor has the worst correlation coe�cient. The pre-
dictor based on the encoding of the sequence as an input,
needs approximatively 4 times as many samples or execu-
tions as our best scheme. The reactions-based approach [5]
Reactions ANN 5 performs similarly (trained with 128 sam-
ples per program from the benchmark), independently of
the training size. This behaviour can be explained by the
fact that the training of the reactions-based model is done
o�ine. The runs required from the program of interested
are used to characterise it and not to train the model. Thus
only a small number of runs is necessary. But even with the
knownledge gains during the o�ine training phase on other
programs, the reactions-based regressor perform worst than
our features-based approach for more than 2 runs.
This section shows that using program features allows the

construction of good performance predictors. The next sec-
tion evaluates their use in selecting good performance im-
proving transformations.

7. PREDICTING NEW SEQUENCES
One of the main advantages of using code features is the

ability to predict the performance of new transformation se-
quences or hand-tuned code. In order to evaluate its use
on unseen transformations, we randomly generated 500 dif-
ferent program versions generated using compositions of 54
di�erent transformations, listed in Table 4 of up to length
20. This new space, refered as large space in the motiva-
tion section, leads to approximately 1034 unique sequences
of transformations.
In order to �nd good tranformation sequences in the large

space, we perform a search by using our features-based pre-
dictor (ANN 5 hidden neurons). The predictor is trained
with a few samples from the small space described earlier.
Using this predictor, we evaluate how it can be used to �nd
good transformation sequences in the new large space.

7.1 Searching the space
Figure 10 shows the result obtained when our features-

based predictor is used to search this large space. Predic-
tors, built from di�erent amount of training data (8, 64,

Transformation
Loop unrolling (factor 1,2,3,4)
Loop tiling (tile size 0,1,...,9)
Splitting of deep FOR loops (0,1,...,9)
Loop �attening
For loop normalisation
Turn imperfectly nested loops into perfectly nested loops
Hoisting of loop invariants
Move loop-invariant conditionals
Guard FORs
Induction variable detection
Array padding (padding 0,1,...,9)
Extract array upper bounds
Improve array bound information
Reconstruct explicit array reference
Scalarise constant array references
Aggressively scalarise constant array references
Expression tree breakup (0,1,...,9)
Reassociation
Control simpli�cation
Forward propagation
Copy propagation
Constant propagation
Constant folding
Bounds comparison substitution
Common subexpression elimination
Replace constant variables
Reduction detection
Privatisation
Secularisation
Dead code elimination
Bit packing
If hoisting
Unstructured control �ow optimisation
Replace call-by-reference
Array Deliberation
Form arrays
Chain multiple array references
Dismantle TREE_FORs
Dismantle TREE_LOOPs
Dismantle TREE_BLOCKs
Dismantle array instructions
Dismantle multi-way branches
Dismantle non-constant FORs
Dismantle TREE_FORs with spilled index variable
Dismantle TREE_FORs with modi�ed index variable
Dismantle empty TREE_FORs
Dismantle TREE_BLOCKs with empty symbol table
Lift call expressions
Eliminate struct copies
Eliminate sub-variables
Globalise local static variables
Global variable privatisation
Put in explicit load/stores for non-local variables
Eliminate enumeration types

Table 4: Transformations used in the large space.

512) from the small space, are shown in this diagram and
compared against random search. The predictor is used to
predict the speedups of all 500 program versions and order
them based on their predicted speedup in decreasing order.
Then, when the search occurs, the program version with
the highest predicted speedup is executed, then the second
best, and so on. As we see on this graph, the more sam-
ples we use during the training phase (8 vs 64 vs 512), the
better the search results are. In the case where we have a
model trained on 512 prior runs, we can achieve 70% of the
available speedup in 10 runs, which takes over 40 random
evaluations to achieve.

7.2 Threshold-based search
An alternative way of using the predictor to search the

space consists of randomly searching within those points
predicted to be within x% of the maximum. For instance,
if we chose x = 1%, all the sequences whose prediction is
within 1% of the maximum predicted value are candidates
for search. The reason for doing this is apparent on reexam-
ination of Figure 1 which shows several predicted maxima.
Ordering the predictions by decreasing order and starting
with the best one can cause the predictor to get stuck in
one of those local maxima.

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f a
va

ila
bl

e
im

pr
ov

em
en

t f
ou

nd

evaluations

pred 512
pred 64
pred 8

random

Figure 10: Searching the large space for good se-
quences. The predictor uses ANN with 5 hidden
neurons and the training size has been varied be-
tween 8 and 512 samples.

By keeping only the points within a given percentage of
the maximum prediction, we �lter away poor predictions
without getting stuck in local maxima. This assumes that
the real maximum speedup value of the space lies within a
few percent of the maximum prediction; Figure 11 shows
this assumption holds. Again, three models with varying
amounts of training data (8, 64, 512) are used to search
the large space. For each model, the �rst approach de-
noted by the line pred 100st is shown. It performs well
initially but fails to provide substantial improvement later
on. The threshold-based schemes denoted by pred x% where
x represents the threshold applied, show slightly worse ini-
tial performance but are able to sustain performance gains
throughout the search.
It seems that having this threshold set to 5% leads to the

best trade o� and allows substantial improvement over the
�rst method after only 20 runs. Obviously the choice of the
strategy depends on the number of evaluations available.
The more evaluations are allowed, the less tight the �lter
needs to be. Overall, our schemes consistently deliver a good
performance level 5× faster than the number of evaluations
required by random search. It is interesting to note that a
threshold of 100% corresponds to random search.
This section shows that not only is our features-based pre-

dictive model good at predicting the performance of trans-
formed programs, but it can also be used to �nd good new
transformed programs when employed in a iterative search
on a new transformation space.

8. RELATED WORK
Most prior work has focused on predicting good optimisa-

tions rather than predicting optimisation performance some
of which relies on program features-based characterisation of
the programs. For instance, Monsifrot et al. [19], Stephen-
son et al. [22] and Agakov et al. [1] all use static loop nest
features. Features may capture those characteristics of the
static program that are best at predicting program trans-
formations to apply. Cavazos et al. [4] describe using super-
vised learning to control whether or not to apply instruction
scheduling. Monsifrot et al. [19] use a classi�er based on de-

cision tree learning to determine which loops to unroll: they
looked at the performance of compiling Fortran programs
from the SPEC benchmark suite using g77 for two di�erent
architectures, an UltraSPARC and an IA64. Stephenson et
al. [22] use machine learning to characterise the best unroll
loop factor for a given loop nest, and improve over the ORC
compiler heuristic. All of these approaches are successful in
automatically generating compiler heuristics for code seg-
ments rather than in predicting the eventual performance of
the selected optimisations for whole programs.
Rather than predicting the impact of a single transfor-

mation, others have looked at searching [23, 12, 7, 2, 16,
20, 10, 11] for the best set or sequence of optimisations for
a particular program. Cooper et al. [7] propose a number
of algorithms to solve the compilation phase ordering prob-
lem. Their technique searches for the best phase order of a
particular program. Such an approach gives impressive per-
formance improvements, but has to be performed each time
a new application is compiled. In contrast, our models are
constructed on a training set of programs and can then be
used to accurately predict the quality of unseen transforma-
tions.
Kulkarni et al. [16] introduce techniques to allow exhaus-

tive enumeration of all distinct function instances that would
be produced from the di�erent phase-orderings of 15 opti-
misations. This exhaustive enumeration allowed them to
construct probabilities of enabling/disabling interactions be-
tween the di�erent optimisation passes. Using these proba-
bilities, they constructed a probabilistic batch compiler that
dynamically determined which optimisation should be ap-
plied next depending on which one had the highest proba-
bility of being enabled.
Fursin et al. [11] developed a technique to speed up pro-

gram iterative optimisations using static multi-versioning of
the most time consuming code sections, and low-overhead
run-time phase detection scheme. This technique can speed
up iterative search by several orders of magnitude and can
be bene�cial during the training data generation stage of
our models.
Pan et al. [20] partitioned a program into tuning sections

and then developed fast techniques to �nd the best com-
bination of optimisations for each of these tuning section.
They are able to reduce the time to �nd good optimisation
settings from hours to minutes.
Agakov et al. [1] build models of good transformation se-

quences from training data on a per program basis. This
is then used to guide iterative search on a new program.
Unlike this paper, they only attempt to predict good trans-
formations to apply rather than predicting the performance
impact of any particular transformation. Predicting perfor-
mance is a signi�cantly more di�cult problem as it requires
the precise capture of architecture behaviour.
Although there has been little work in predicting perfor-

mance of programs in an arbitrary transformation space,
there has been related work performed in architecture design
space exploration. Karkhanis et al. [15] propose an analyt-
ical model for hardware exploration that captures the key
performance features of superscalar processors. This model
can potentially be used for software exploration, but the
construction of the model is ad hoc and a complex process,
which makes it di�cult to generalise and replicate. Eeck-
hout et al. [8] use statistical simulation to similarly capture
processor characteristics, and generate synthetic traces that

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f a
va

ila
bl

e
im

pr
ov

em
en

t f
ou

nd

evaluations

pred 100st
pred 1%
pred 5%

pred 10%
random

(a) 64 training samples.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f a
va

ila
bl

e
im

pr
ov

em
en

t f
ou

nd

evaluations

pred 100st
pred 1%
pred 5%

pred 10%
random

(b) 8 training samples.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f a
va

ila
bl

e
im

pr
ov

em
en

t f
ou

nd

evaluations

pred 100st
pred 1%
pred 5%

pred 10%
random

(c) 512 training samples.

Figure 11: Each graph shows the predictor trained with a di�erent amount of training data. Each line
corresponds to the performance of the corresponding search technique.

are later run on a simpli�ed superscalar simulator. After any
program transformation, a new trace (requiring a full func-
tional simulation) needs to be generated if this approach
were to be used for software exploration. Thus, this ap-
proach is not suitable for software exploration.
Recently Ipek [14] has proposed a distinct method for

both considerably speeding up and automating the hard-
ware design-space exploration process. The idea is to train
an ANN to predict the impact of hardware parameter vari-
ations (e.g., cache size, memory latency, etc) on the per-
formance behaviour of a target architecture. After training
on less than 5% of the design space, the model can accu-
rately predict performance variations with less than 2% er-
ror. Though as we noted earlier this does not mean it is
discriminating and should be compared against a mean pre-
dictor. Also, any modi�cation of the program binary, such
as applying a program transformation, requires training a
new model using several thousands simulations. As a result,
this approach is also not suitable for software exploration.
Our approach similarly relies on machine learning to build a

performance model, but it can accommodate any new pro-
gram transformation without retraining.

9. CONCLUSION AND FUTURE WORK
This paper has shown that it is possible to automatically

derive a performance predictor for tuning programs. By us-
ing program features we have shown that such predictors can
be constructed using machine learning based approaches.
Unlike previous approaches, we require only a few training
runs per program and no prior training on a benchmark
suite. In addition, the predictor is not restricted to previ-
ously seen transformations. By incorporating our features-
based approach with a single hidden layer ANN we show
that high level of predictive accuracy is achievable. Fur-
thermore, we show that such a predictor can be used to �nd
good transformation sequences in an unseen transformation
space.
Future work will combine our technique with architectural

performance prediction allowing automatic performance pre-
diction of the compiler/architecture co-design space.

10. REFERENCES
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke,

G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint,
and C.K.I. Williams. Using machine learning to focus
iterative optimization. In Proceedings of the
International Symposium on Code Generation and
Optimization (CGO), pages 295�305, 2006.

[2] L. Almagor, K.D. Cooper, A. Grosul, T.J. Harvey,
S.W. Reeves, D. Subramanian, L. Torczon, and
T. Waterman. Finding e�ective compilation sequences.
In Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), pages 231�239, 2004.

[3] C. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 2005.

[4] J. Cavazos and J. Eliot, and B. Moss. Inducing
heuristics to decide whether to schedule. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 183�194, 2004.

[5] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla,
M.F.P. O'Boyle, G. Fursin, and O. Temam. Automatic
performance model construction for the fast software
exploration of new hardware designs. In Proceedings of
CASES, pages 24�34, 2006.

[6] K.D. Cooper, A. Grosul, T.J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman.
Searching for compilation sequences. Tech. report,
Rice University, 2005.

[7] K.D. Cooper, A. Grosul, T.J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman.
Acme: adaptive compilation made e�cient. In
Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), pages 69�77, 2005.

[8] L. Eeckhout, R.H. Bell Jr., B. Stougie,
K.D. Bosschere, and L.K. John. Control �ow modeling
in statistical simulation for accurate and e�cient
processor design studies. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), pages 350�363, 2004.

[9] A. Epshteyn, M. Garzaran, G. DeJong, D. Padua,
G. Ren, X. Li, K. Yotov and K. Pingali. Analystic
Models and Empirical Search: A Hybrid Approach to
Code Optimization, In Languages and Compilers for
Parallel Computing (LCPC), 2005.

[10] G.C. Fursin, M.F.P. O'Boyle, and
P.M.W Knijnenburg. Evaluating Iterative
Compilation. In Proceedings of the 15th Workshop on
Languages and Compilers for Parallel Computing
(LCPC), pages 305�315, 2002.

[11] G. Fursin, A. Cohen, M.F.P. O'Boyle, and O. Temam.
A Practical Method For Quickly Evaluating Programs
Optimizations. In Proceedings of the 1st International
Conference on High Performance Embedded
Architectures & Compilers (HiPEAC), pages 29�46,
2005

[12] B. Franke, M.F.P. O'Boyle, J. Thomson, and
G. Fursin. Probabilistic source-level optimization of
embedded programs. In Proceedings of the Conference
on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 78�96, 2005.

[13] M. Hall, L. Anderson, S. Amarasinghe, B. Murphy,
S.W. Liao, E. Bugnion, and M. Lam. Maximizing
multiprocessor performance with the SUIF compiler.
IEEE Computer, V. 29, I. 12, pages 84�89, 1999.

[14] E. Ipek, S.A. McKee, B.R. de Supinski, M. Schulz,
and R. Caruana. E�ciently Exploring Architectural
Design Spaces via Predictive Modeling. In Proceedings
of the 12th international conference on Architectural
support for programming languages and operating
systems, (ASPLOS-XII), pages 195�206, 2006.

[15] T. Karkhanis, and J.E. Smith. A �rst-order
superscalar processor model. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), pages 338�349, 2004.

[16] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,
J. Davidson, M. Bailey, Y. Paek, and K. Gallivan.
Finding e�ective optimization phase sequences. In
Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), pages 12�23, 2003.

[17] K. Karuri, M. A. Al Faruque, S. Kraemer, R. Leupers,
G. Ascheid, H. Meyr. Fine-grained application source
code pro�ling for ASIP design. In Proceedings of the
42nd annual conference on Design automation (DAC),
pages 329�334, 2005.

[18] C. Lee. Utdsp benchmark suite. In
http://www.eecg.toronto.edu/~corinna/
DSP/infrastructure/UTDSP.html, 1998.

[19] A. Monsifrot, F. Bodin, and R. Quiniou. A machine
learning approach to automatic production of
compiler heuristics. In Proceedings of the International
Conference on Arti�cial Intelligence: Methodology,
Systems, Applications, LNCS 2443, pages 41�50, 2002.

[20] Z. Pan, and R. Eigenmann. Fast automatic
procedure-level performance tuning. In Proceedings of
the 15th international conference on Parallel
architectures and compilation techniques PACT, pages
173�181, 2006.

[21] M. Saghir, P. Chow, and C. Lee. A comparison of
traditional and vliw dsp architecture for compiled dsp
applications. In Proceedings of the International
Workshop on Compiler and Architecture Support for
Embedded Systems (CASES), 1998.

[22] M. Stephenson and S.P. Amarasinghe. Predicting
unroll factors using supervised classi�cation. In
Proceedings of International Symposium on Code
Generation and Optimization (CGO), pages 123�134,
2005.

[23] S. Triantafyllis, M. Vachharajani, N. Vachharajani,
and D.I. August. Compiler optimization-space
exploration. In Proceedings of the International
Symposium on Code Generation and Optimization
(CGO), pages 204�215, 2003.

[24] T.F. Wenisch, R.E. Wunderlich, B. Falsa�, and
J.C. Hoe. Turbosmarts: accurate microarchitecture
simulation sampling in minutes. In Proceedings of the
ACM SIGMETRICS, pages 408�409, 2005.

[25] R.E. Wunderlich, T.F. Wenisch, B. Falsa�, and
J.C. Hoe. Smarts: Accelerating microarchitecture
simulation via rigorous statistical sampling. In
Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 84�95, 2003.

