
1
 INRIA Saclay, France 2 IBM Haifa, Israel 3 University of Edinburgh

MILEPOST GCC: machine learning based research compiler

More information

Project news: http://www.milepost.eu
GCC-ICI: http://gcc-ici.sourceforge.net
UNIDAPT: http://unidapt.org

Extended version (GCC Summit'08): http://unidapt.org/papers/fmtp2008.pdf

Tuning hardwired compiler optimizations for rapidly
evolving hardware makes porting an optimizing
compiler for each new platform extremely
challenging. Our radical approach is to develop a
modular, extensible, self-optimizing compiler that
automatically learns the best optimization heuristics
based on the behavior of the platform. In this poster
we describe MILEPOST** GCC, a machine-learning-
based compiler that automatically adjusts its
optimization heuristics to improve the execution time,
code size, or compilation time of specific programs
on different architectures. Our preliminary
experimental results show that it is possible to
considerably reduce execution time of the MiBench
benchmark suite on a range of platforms entirely
automatically.

* MILEPOST Project - MachIne Learning for
Embedded PrOgramS opTimization

http://www.milepost.eu

Challenges

Current state-of-the-art compilers often fail to deliver
best performance due to:

• hardwired optimization heuristics (cost models) for
rapidly evolving hardware (often impossible to fine-
tune programs externally)

• interaction between optimizations
• large irregular optimization spaces
• difficult to add new transformations to already tuned

optimization heuristics
• inability to reuse optimization knowledge among

different programs and architectures
• lack of run-time information and inability to adapt to

varying program and system behavior at run-time with
low overhead

Need modular self-tuning compilers that can
continuously and automatically learn how to optimize
programs, and have an ability to make program
adaptable at run-time for different behavior and
constraints

Iterative compilation
Optimization spaces (set of all possible program transformations)

are large, non-linear with many local minima

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 1052

Iterative compilation:
learn program behavior across executions

High potential (O’Boyle, Cooper since 1998), but:
 - slow
 - the same dataset is used
 - no run-time adaptation
 - no optimization knowledge reuse

Solving these problems is non-trivial

Motivation

MILEPOST Framework Interactive Compilation Interface GCC IC Plugins

Training PredictingOptimization selection

Feature extraction

1
1.1
1.2
1.3
1.4
1.5
1.6

bi
tc

ou
nt

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

jp
eg

_c
jp

eg
_d

di
jk

st
ra

pa
tri

ci
a

bl
ow

fis
h_

d
bl

ow
fis

h_
e

rij
nd

ae
l_

d
rij

nd
ae

l_
e

sh
a

ad
pc

m
_c

ad
pc

m
_d

CR
C3

2

gs
m

qs
or

t1
st

rin
gs

ea
rc

h1

sp
ee

du
p

AMD - a cluster with 16 AMD Athlon 64 3700+ processors running at 2.4GHz
IA32 - a cluster with 4 Intel Xeon processors running at 2.8GHz
IA64 - a server with an Itanium2 processor running at 1.3GHz

0.8
0.9

1
1.1
1.2
1.3
1.4

bi
tc

ou
nt

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

jp
eg

_c
jp

eg
_d

di
jk

st
ra

pa
tr

ic
ia

bl
ow

fis
h_

d
bl

ow
fis

h_
e

rij
nd

ae
l_

d
rij

nd
ae

l_
e

sh
a

ad
pc

m
_c

ad
pc

m
_d

C
RC

32

gs
m

qs
or

t1
st

rin
gs

ea
rc

h1
A

ve
ra

ge

sp
ee

du
p

Iterative compilation Predicted optimization passes using ML and MILEPOST GCC

Future work

Training: Gathering information about the structure of
programs and record how they behave when compiled under
different optimization settingsto build machine learning models.
Deployment: ML model is able to predict good optimization
strategies for a given set of program features and is built as a
plugin within MILEPOST GCC.

The ICI provides opportunities for external control and
examination of the compiler. Optimization settings at a
fine-grained level, beyond the capabilities of command line
options or pragmas, can be managed through IC plugins.

Modifications needed to enable GCC ICI:
ic-framework.c: GCC plugin (dynamic library) invocation
save-executed-passes.c: Plugin to monitor executed passes. It
registers an event handler function executed_pass on an IC-Event
called pass_execution.
passes.c: Modifications in GCC Controller (Pass Manager) to
enable manipulation with optimization passes.

Using Interactive Compilation Interface we can conduct
research on optimization pass selection and reordering
fixupcfg,init_datastructures,all_optimizations, ... ,retslot,copyrename,ccp, ...,dce,dom,phicprop,phiopt,alias,tailr,
profile,ch,...,alias,copyrename,dom,phicprop,reassoc,dce,dse,alias, ...,copyprop,lim,unswitch,...,cunroll,ivopts,
loopdone,reassoc,vrp,dom,phicprop,cddce,dse,forwprop,phiopt,tailc,copyrename,uncprop,optimized,,cse1,
gcse1,bypass,ce1,...,final, clean_state

Sequence of compiler passes for –O3

fixupcfg,init_datastructures,all_optimizations, ...,retslot,ccp,...,dce,phiopt,alias,profile,ch,...,alias,reassoc,dce,alias,...,
cunroll, loopdone,reassoc,vrp,cddce,forwprop,phiopt,optimized, ..., cse1,ce1,...,loop2_unroll,loop2_done,web,cse2,
life1,combine,ce2, regmove,split1,mode-sw,life2,sched1,...,final,clean_state

Sequence of GCC passes for the “good” set of compiler flags (ISSUE with UNROLLING, PEELING)

We generate training data using Continuous Collective
Compilation Framework. We select 500 random sequences of
flags (or associated passes) either turned on or off. We can
already achieve considerable speedups across all platforms,
however it is very time-consuming process motivating the use
of machine learning to automatically build specialized compilers
and predict the best optimization flags or sequences of passes
for different architectures.

Once ML model is built, we can evaluate it by introducing a
new program to a system and measuring how well the
prediction performs. This graphs shows the speedups
obtained on ARC725D after iterative compilation (500
iterations) and after 1 prediction. It demonstrates that except
a few pathological cases using CCC Framework, MILEPOST
GCC and Machine Learning Models we can improve original
ARC GCC by around 11%.

We can now add new passes that are not included into default
optimization heuristic but called through ICI and plugins:
 ft1 - Number of basic blocks in the method
 …
 ft20 - Number of conditional branches in the method
 ft21 - Number of assignment instructions in the method
 …
 ft25 - Average of number of instructions in basic blocks
 …
 ft55 - Number of static/extern variables that are pointers in the method

- continue research on pass selection and reordering for
reconfigurable processors and design space exploration
- improve and automate selection of static and dynamic
(hardware counters) program features
- use ICI for adaptive libraries
- enable run-time adaptation and parallelization for static
programs

Grigori Fursin
Cupertino Miranda

Olivier Temam

INRIA Saclay, France

Contact: grigori.fursin@inria.fr

Mircea Namolaru
 Elad Yom-Tov

Ayal Zaks
Bilha Mendelson

IBM Haifa, Israel

Phil Barnard
Elton Ashton

ARC International
UK

Eric Courtois
Francois Bodin

CAPS Enterprise
France

Edwin Bonilla
John Thomson
Hugh Leather
Chris Williams

Michael O'Boyle

University of Edinburgh, UK

http://www.milepost.eu/
http://gcc-ici.sourceforge.net/
http://unidapt.org/
http://unidapt.org/papers/fmtp2008.pdf
http://www.milepost.eu/

