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Abstract

Building an optimizing compiler is a difficult and time consuming task which must be repeated for each generation of a

microprocessor. As the underlying microarchitecture changes from one generation to the next, the compiler must be retuned

to optimize specifically for that new system. It may take several releases of the compiler to effectively exploit a processor’s

performance potential, by which time a new generation has appeared and the process starts again.

We address this challenge by developing a portable optimizing compiler. Our approach employs machine learning to

automatically learn the best optimizations to apply for any new program on a new microarchitectural configuration. It

achieves this by learning a model off-line which maps a microarchitecture description plus the hardware counters from a

single run of the program to the best compiler optimization passes. Our compiler gains 67% of the maximum speedup

obtainable by an iterative compiler search using 1000 evaluations. We achieve, on average, a 1.16x speedup over the highest

default optimization level across an entire microarchitecture configuration space, achieving a 4.3x speedup in the best case.

We demonstrate the robustness of this technique by applying it to an extended microarchitectural space where we achieve

comparable performance.

1 Introduction

Creating an optimizing compiler for a new microprocessor is a time consuming and laborious process. For each new mi-

croarchitecture generation the compiler has to be retuned and specialized to the particular characteristics of the new machine.

Several releases of a compiler might be needed to effectively exploit the processor’s performance potential, by which time

the next microarchitecture generation has been developed and the process starts again. This never-ending game of catch-up

means that we rarely exploit a shipped processor to the full and this inevitably delays the time to market. Although this is

a general issue for all processor domains, it is particularly acute for embedded systems. Ideally, we would like a portable

compiler technology that provides retargetable optimization while fully exploiting the characteristics of the new microarchi-

tecture. In other words, given any new processor generation, deliver a compiler that automatically optimizes for that new

target and achieves high performance.

Building such a compiler is, however, extremely challenging. This is primarily due to the complexity of the underlying

machine’s behavior and the varying structure of the programs being compiled. Iterative compilation, which tunes each new

program on a specific architecture [6, 16, 24, 31], has provided a methodology to find good optimizations. Techniques such

as genetic algorithms [24], hill climbing [2] or optimization orchestration [31] have been explored, all showing impressive

performance improvements. Although useful, these approaches all suffer from the large number of compilations and execu-
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tions required to optimize each program. Every time the program or architecture changes, this time-consuming process must

be repeated.

In order to overcome these challenges, researchers have developed compilers that learn optimization strategies using prior

knowledge of other programs’ behavior. Stephenson et al. [35] showed that genetic programming can learn good individual

compiler optimizations on a fixed architecture, eliminating the need for any iterative compilations of the new program.

Cavazos et al. [3] showed that this could be used to learning the best set of compiler options on a fixed architecture. Although

these approaches dramatically reduce or even eliminate the need for extra compilations and executions of the target program,

they suffer from the need to entirely retrain the compiler whenever the platform changes.

In this paper we develop, to the best of our knowledge, the first truly portable optimizing compiler. Given a new microar-

chitecture, our approach automatically determines the right optimization passes for any new program. Our scheme learns a

machine learning model off-line which maps a microarchitecture description plus the hardware counters from a single run

of the program to the best compiler optimization passes. The learning process is a one-off activity whose cost is amortized

across all future users of the compiler on subsequent variations of the processor’s microarchitecture.

Using this approach we can, on average, achieve a 1.16x speedup over the highest default compiler optimization across

200 microarchitectural configurations. We further show that this approach achieves 67% of the maximum performance

improvement gained by standard iterative compilation search using 1000 evaluations. Given our approach, a new compiler

does not need to be tuned whenever the processor microarchitecture changes or a new program needs compiling. This allows

compilers to become fully integrated into the design space exploration of a new processor generation, helping designers

to fully evaluate the potential of any new microarchitecture. Overtime, designers may wish to add new microarchitectural

features not originally envisaged. We show that our approach adapts to new microarchitectural configurations and is able to

deliver the same level of performance.

In summary, this paper makes the following contributions:

• We develop a machine learning model that can predict the best optimization passes to use for any new program when

compiling for a new microarchitecture;

• We show how our scheme accurately delivers the performance improvements available across the MiBench benchmark

suite and an embedded microarchitectural design space;

• We demonstrate the robustness of our scheme showing that it delivers comparable performance on an extended mi-

croarchitecture space.

The next section provides a short example demonstrating the difficulty of achieving portable optimization. Section 3 pro-

vides a description of how our compiler is trained and deployed using machine learning. Section 4 describes the experimental

setup. Section 5 then evaluates the technique and analyzes the results. Section 6 evaluates this approach on a new extended

space. This is followed by a description of related work in section 7. Finally, section 8 concludes the paper.
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Figure 1. Segment diagrams representing the optimization passes to enable in order to achieve the
highest performance for three programs executed on three microarchitectures. A filled segment

means that the optimization should be enabled, an empty one means it should be disabled.

2 Example

In this paper we limit our study to selecting the right passes within an existing compiler framework for varying programs

and microarchitectures. Although this may seem like a restricted setting, the best optimization passes to apply vary signifi-

cantly between programs and microarchitectural configurations. Finding the best set of optimization passes across programs

and microarchitectures is highly non-trivial.

To illustrate this point, consider figure 1 which shows segment diagrams for three programs (rijndael_s, untoast and

madplay) on three microarchitectures from our design space (described in section 4). For these three programs and mi-

croarchitectures, we found the best optimization passes to apply (described in section 4.2.1). These optimizations lead to

significant speedups, ranging from 1.16x to 2.62x speedup over the highest default optimization level. In this example we

show only five significant optimization passes: block reordering, loop unrolling, function inlining, instruction scheduling and

global common sub-expression elimination, labeled on the right of figure 1. For each program/microarchitecture pair there is

a circle of five segments representing the five passes. If the segment is filled, then the corresponding optimization should be

enabled for the given program and microarchitecture. If empty, it should be disabled.

What is immediately clear is that the best set of optimization passes to apply changes across programs and microarchi-

tectures. If we consider madplay for instance, three optimizations should be enabled for microarchitecture A, a different set

of three for B and four enabled for configuration C. If we now consider microarchitecture B, two optimizations should be

turned on for rijndael_e, four when compiling untoast and only three for madplay. Given the large number of optimizations

available in a typical compiler, providing a portable optimizing compiler for programs and microarchitectures is non-trivial.

However, there are similarities between programs and microarchitectures that we can exploit. The best set of optimiza-

tions for rijndael_e on configuration C and madplay on microarchitecture A are exactly the same. This is also true for

untoast on microarchitectures B and C and madplay on configuration C. If we can somehow characterize the program mad-

play on configuration A and relate it to the characteristics of rijndael_e on microarchitecture C, then we can apply the same
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Figure 2. Overview of our portable optimizing compiler. The compiler takes in a program source,

some performance counters and a microarchitecture description and outputs an optimized program

binary for the microarchitecture. At the heart of the compiler is a machine learning model that
predicts the best passes to run, controlling the optimizations applied.

optimization passes to madplay as we did to rijndael_e. This will allow us to obtain the best speedups on this new pro-

gram/microarchitecture pair without having ever seen madplay or configuration A before. In the next section we develop a

machine learning model that automatically identifies these similarities. We then use and evaluate it in section 5 to provide

portable optimization across programs and microarchitectures.

3 Enabling Portable Optimization

As seen in the previous section, the best performance is achieved by applying different optimizations depending on the

program and the underlying microarchitecture. This means that with current approaches to tuning an optimizing compiler [1,

3, 30, 35] a new compiler needs to be developed for each new generation of the microarchitecture. To overcome this problem,

we develop a machine learning model that automatically adapts the compiler’s optimization strategy for any program and any

microarchitecture.

3.1 Overview

Figure 2 gives an overview of our compiler’s structure. The tool works like any other compiler, taking as an input the

source code of a program and producing an optimized binary. However, in addition to the source code our compiler has two

other inputs which it uses internally to optimize the program specifically for the microarchitecture it will run on.

Firstly, our compiler takes in a description of the microarchitecture to target. This is similar to standard compilers where

this description is hard-coded in a machine description file; here it is just an input. Secondly, it takes in performance counters

derived from a previous run of the program. This is similar to feedback-directed compilers that typically use profiling

information from a previous run to generate an optimized version of the program. However, unlike any existing technique,

our compiler generates an optimized binary specifically for the target microarchitecture even when it has never seen the

program or the microarchitecture before. Therefore, the compiler does not have to be modified or regenerated whenever a

new program or microarchitecture is encountered.
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Performance Counter

Instructions per cycle Insn cache access rate ALU usage

Decoder access rate Insn cache miss rate Mac usage

Register file access rate Data cache access rate Shifter usage

Branch pred. access rate Data cache miss rate

Table 1. Performance counters used as a representation of program/microarchitecture pairs.

At the heart of our compiler is a model that correlates the behavior of the new input program and microarchitecture with

programs and microarchitectures that it has previously seen. Such a model is built using machine learning and our approach

can be considered as a three stage process: generating training data, building a model and deploying it. The next three

subsections describe each of these activities in detail, allowing us to create the overall compiler shown in figure 2.

3.2 Generating Training Data

In order to build a model that predicts good optimization passes, we need examples of various optimization passes on

different programs and microarchitectures as well as a description of each program and microarchitecture. We generate

this training data by evaluating N different sets of optimization passes, y, on a set of training program/microarchitecture

pairs, X1, . . . , XM , and recording their execution times, t. We can characterize a program/microarchitecture pair using

a vector of features x1 . . . ,xM . Therefore, for each program/microarchitecture pair Xj we have an associated dataset

Dj = {(yi, ti)j}N
i=1, with j = 1, . . .M . Our goal is to predict the best set of optimization passes y∗ whenever a new

program/microarchitectureX∗ is encountered.

Although the generated dataset may be large, it is only a one-off cost incurred by our model. Furthermore, techniques

such as clustering [32] are able to reduce this and is the subject of future work.

Features We characterize program interaction with the processor using 11 performance counters, c, and with the microar-

chitectures using 8 descriptors, d. The performance counters are shown in table 1 and are similar to those typically found

in processor analytic models [12, 22] To capture the features of the microarchitecture we simply record its static description

shown in table 2. The performance counters from a program running on a microarchitecture, c, are concatenated together

with the microarchitecture description, d, to form a single feature vector for the program/microarchitecture pair, x = (c,d).

3.3 Building a Model

Our aim is to build a model,M(x,y), that provides the mapping from any set of program/microarchitecture features to a

set of good optimization passes: M : x → y. We approach this problem by learning the mapping from the features, x, to

a probability distribution over good optimization passes, q(y|x). Once this distribution has been learned (see next section),

prediction of a new program on a new microarchitecture is achieved by sampling at the mode of the distribution. Thus we

obtain the predicted set of optimizations by computing:

y∗ = argmax
y

q(y|x∗). (1)
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In other words, we find the value of y that gives the greatest probability of being a good optimization.

3.3.1 Fitting Individual Distributions

In order to learn the model we need to fit a probability distribution over good optimization passes to each training pro-

gram/microarchitecture. Let g(y|X) be a parametric distribution specific to a program/microarchitecture pair X . Note that

whereas g(y|X) is specific to the identity of a program/microarchitecture pair, q(y|x) allows generalization across programs

and microarchitectures by being conditioned on a set of features x.

Let Ỹ be a set of good optimization passes and p̃(y|X) be the empirical distribution over these passes1 for program and

microarchitecture pairX . We wish to fit the parametric distribution g(y|X) for each program/microarchitecture pair to be as

close as possible to the empirical distribution p̃(y|X). To do this we can minimize the Kullback-Leibler (KL) divergence:2

KL(p̃(y), g(y)) =

〈
log

p̃(y)

g(y)

〉

p̃(y)

= constant+ H(p̃(y), g(y)), (2)

whereH(p̃(y), g(y)) is the cross-entropy of p̃(y) and g(y). Thus, we can maximize the objective function:

L = −H(p̃(y), g(y)) =
∑

y∈ eY

p̃(y) log g(y). (3)

In principle, our model’s probability distribution g(y) can belong to any parametric family. However, we have selected

a very simple IID (independent and identically distributed) model, where the impact of each pass (yℓ) is considered to be

independent of all others, i.e. g(y) =
∏L

ℓ=1 g(yℓ), where L is the number of available passes. If g(yℓ) is a multinomial

distribution we have that:

g(y) =

L∏

ℓ=1

g(yℓ) =

L∏

ℓ=1

|Sℓ|∏

j=1

(θj
ℓ )

I[yℓ=s
(j)
ℓ

], (4)

where Sℓ = {s
(1)
ℓ , . . . , s

(|Sℓ|)
ℓ } is the set of possible values that the pass yℓ can take (i.e. on, off or a parameter value);

I[yℓ = s
(j)
ℓ ] is an indicator function that is 1 only when the particular optimization pass yℓ takes on the value s

(j)
ℓ (i.e. I[yℓ =

s
(j)
ℓ ] = 1 when yℓ = s

(j)
ℓ and zero otherwise); and θ

j
ℓ is the probability of the optimization pass yℓ taking on the particular

value s
j
ℓ (i.e. θ

j
ℓ = p(yℓ = s

(j)
ℓ )); and, by definition, we have that

∑
j θ

j
ℓ = 1.

By using equations (4) in equation (3) andmaximizing the latter with respect to each parameter θ
j
ℓ subject to the constraints

∑
j θ

j
ℓ = 1 we obtain:

θ
j
ℓ =

∑

y∈eY

p̃(y)I[yℓ = s
(j)
ℓ ]. (5)

This result is known as the maximum likelihood estimator. Since we have used the uniform distribution as p̃(y), this

1In our experiments we have chosen the set of “good” optimizations eY to be those combinations of passes that are within the top 5% of all training

optimizations for the respective program/microarchitecture pair. We have then weighted these optimizations uniformly.
2For the following derivation, to simplify the notation, we will omit the conditional dependency of these distributions on a specific pro-

gram/microarchitecture pairX.
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Figure 3. Compiler optimizations and their parameters. Each is a pass within gcc and can be varied
independently. In total there are 642 million combinations.

means that the estimation of the parameters of the IID distribution θ
j
ℓ is the number of (selected) optimization passes in

which yℓ = s
(j)
ℓ divided by the total number of (selected) passes.

Our assumption of statistical independence between compiler optimizations may seem simplistic because it is well known

that optimizations interact with each other. However, as we shall see in section 5, this IID model generalizes well across

programs and microarchitectures. Our model works on the assumption that although compiler optimizations do interact,

these interactions are less important across good sets of optimizations. Additionally, more complicated distributions, e.g. a

Markov model, could be considered without modifying our approach.

3.3.2 Learning a Predictive Distribution Across Programs and Microarchitectures

Once the individual training distributions for each program/microarchitecture pair g(y|X) have been obtained, we can

learn a predictive distribution q(y|x). This will predict the probability of each optimization pass value being good from the

features, x, of a program/microarchitecture pair (performance counters, c, and microarchitecture descriptors, d).

One possible way of learning this distribution is to use memory-based methods such as K-nearest neighbors. In other

words, we can set the predictive distribution q(y|x) to be a convex combination of the K distributions corresponding to the

training programs and microarchitectures that are closest in the feature space to the new (test) program and microarchitecture.

The coefficients of the combination are obtained by using:

wk =
exp{−βd(x(k),x(∗))}

∑K

k=1 exp{−βd(x(k),x(∗))}
, (6)

where β is a constant and d(·, ·) is our evaluation function, i.e. the euclidean distance of each corresponding nearest training

point to the test point, so that the distributions of the closest training points are assigned larger weights. We have set β = 1

andK = 7 different neighbor programs, although we have found experimentally that the technique is not sensitive to similar

values ofK .

3.4 Deployment

Once the model is built, it can be used to predict the best optimization passes for any new program on any newmicroarchi-

tecture, as shown in figure 2. It does this using just one run of the new program compiled with the default optimization level,
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Parameter Values XScale Parameter Values XScale

IL1 size 4K. . .128K 32K DL1 size 4K. . .128K 32K

IL1 assoc. 4. . .64 32 DL1 assoc. 4. . .64 32

IL1 block 8. . .64 32 DL1 block 8. . .64 32

BTB entries 128. . .2048 512 BTB assoc. 1. . .8 1

Table 2. Microarchitectural parameters and their values. Each parameter varies as a power of 2,

meaning 288,000 total configurations. Also shown are the values for the XScale processor.

O3, on the new microarchitecture. Thus, given a new program/microarchitecture pair, X∗, we extract its features by using

the microarchitecture description, d∗, and the performance counters from a run of this program (compiled with O3) on this

microarchitecture, c∗, so that we form x∗ = (c∗,d∗). We then use equation (1) above to give the predicted-best optimization

passes, y∗, compile and execute the program with this new optimization.

4 Design Space

The previous section has developed a machine learning model that automatically predicts the correct optimization passes

to apply for any new program on any microarchitectural configuration. This section describes our experimental setup later

used to evaluate this model. It also provides a brief characterization of the compiler and microarchitectural design spaces.

4.1 Benchmarks

We chose to use MiBench [15], a common embedded benchmark suite, well suited to the microarchitecture space of

this paper. It contains a mix of programs, from signal processing algorithms to full office applications. We used all 35

programs, running each to completion using an input set requiring at least 100 million executed instructions, wherever

possible. Therefore, susan_c, susan_e, djpeg, tiff2rgba and search were run with the large input set, all others were run with

the small inputs.

4.2 Microarchitecture Space

In this paper we consider a typical embedded microarchitectural design space based on the XScale processor shown in

table 2. We show the microarchitecture parameters of the XScale that we varied along with the values each parameter can

take. To generate our design space we varied the cache and branch predictor configurations because they are important

components of an embedded processor. Other significant parameters such as pipeline depth or voltage scaling were not

considered, but could be easily added to our experimental setup. We varied the parameters over a wide range of values,

beyond those in current systems, to fully explore the design space of this processor’s microarchitecture. In total there are

288,000 different configurations some of which give increased performance over the original processor (up to 19%), others

give significantly reduced power consumption (up to 21%) which is equally significant for embedded processors. In our

experiments we used a sample space of 200 configurations selected with uniform random sampling. Each configuration was

implemented in the Xtrem simulator [5] which has been validated for performance against the XScale processor. We also
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Figure 4. Distribution of the maximum speedup available across all microarchitectures on a per-

program basis. The x-axis represents the program and the y-axis the speedup relative to gcc’s

default optimization level O3. The central line denotes the median speedup. The box represents the
25 and 75 percentile area while the outer whiskers denote the extreme points of the distribution.

used Cacti [36] to accurately model the cache access latencies, ensuring our experiments were as realistic as possible.

Application to other spaces We have considered an embedded microarchitectural space and benchmark suite because

this represents a real-world challenge for portable compiler optimization, based around an existing processor configuration.

However, the machine learning schemes we develop in this paper are independent of this and can equally be applied to other,

more complex spaces. In section 6 we extend the microarchitectural space by varying frequency and issue width and show

that our approach adapts to the new space.

4.2.1 Compiler Optimization Space

Finding the best optimization for a specific program on a specific microarchitecture is intractable. To do this, all equivalent

programs, of which there are infinitely many, must be evaluated and the best selected. Therefore, in this paper we limit

ourselves to finding the best optimization within a finite space of optimizations. The space we have considered consists of

all combinations of the compiler passes and their parameters shown in figure 3. These passes are applied within gcc 4.2, an

industry standard for the XScale processor. They were found to have a performance impact on the XScale microarchitecture

configuration and other researchers have explored a similar space [39], allowing independent comparisonswith existing work.

Turning passes on or off leads to a design space of 642 million different optimizations. Varying the parameters controlling

some of the optimizations, (e.g. gcse has five further options) leads to a total of 1.69 ∗ 1017 unique optimization passes.

Clearly, it is not feasible to exhaustively enumerate this entire space to find the best optimizations for each program on

each microarchitecture. However, iterative compilation can be used to quickly find an approximation of the best and has

been shown to out-perform other approaches [31]. Hence, to find the best optimizations, we used iterative compilation

which evaluated a 1000 different optimizations. These optimizations were selected using uniform random sampling. In our

experimental setup we saw almost no additional improvement after 1000 evaluations, showing that it is a useful indicator of
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the upper bound on realistic performance achievable by a compiler.

4.3 Characterizing the Compiler Space

Before trying to build a compiler that optimizes across microarchitectures, it is important to examine whether there is

any performance to gain. For this purpose, we evaluated the impact of the compiler optimizations on the 35 MiBench

programs compiled with the 1000 random optimization passes, each of which was executed on the 200 different architectural

configurations, as described earlier. This corresponds to a sample space of 7 million simulations and should provide some

evidence of the potential benefits of optimization passes selection across microarchitectures and programs. We then record

the best performance achieved on a per program per architecture basis.

Figure 4 shows the sample space’s distribution of maximum speedups for each program across the microarchitectural

configurations when compiling with the best set of optimizations per program per microarchitecture. What is immediately

clear is that there is significant variation across the programs. For some the performance improvement is modest; selecting

the best optimizations does not help the library-bound benchmarks qsort or basicmath for instance. For rijnadael_e there

is significant performance improvement to be gained, ranging from a 1.2x speedup to 4.8x in the best case, 1.8x being the

average. In the case of search the extremes are much less but on average selecting the best optimization gives a 2.2x speedup

across all configurations. In programs such as toast, madplay and untoast, there are modest speedups to be gained on average

but significant improvements available on certain microarchitectures (up to 2.4x for madplay as the top whisker shows).

The right-most entry shows that there is an average speedup of 1.23x available across the design space if we were able to

select the best optimizations per program per microarchitecture. The challenge is to develop a compiler that can automatically

obtain this speedup without having seen the program or target microarchitectural configuration before. Furthermore, it should

be able to capture the high performance available on certain microarchitectures and avoid the potential slowdowns found by

picking the wrong optimizations. We found that choosing the wrong set of passes can lead to an average speedup of 0.7

across programs and 0.2 in the worst case (i.e. 5 times slower). The next section evaluates experimentally the performance

of the machine-learning compiler developed in section 3.

5 Experimental Methodology and Results

We first describe our evaluation methodology and then evaluate our approach across programs and microarchitectures.

This is followed by an analysis of the results.

5.1 Evaluation Methodology

This section describes how we perform our experiment and determine the best performance achievable in our space.

Cross-Validation To evaluate the accuracy of our approach we use leave-one-out cross-validation. This means that we

remove a program and a microarchitecture from our training set, build a model based on the remaining data and then predict
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(b) Our compiler

Figure 5. Speedup over O3 for each program/microarchitecture pair. Figure (a) shows the best im-
provement possible over the programs and microarchitectures. Figure (b) shows the performance

of the passes predicted by our compiler scheme. Our portable optimizing compiler can accurately

predict the best passes to enable across this space to achieve the speedups available across all
programs and microarchitectures.

the best optimizations for the removed program and microarchitecture. Following this, the program is compiled and executed

with the predicted optimizations on that microarchitecture and its performance recorded. We then repeat this for each pro-

gram/microarchitecture. This is a standard evaluation methodology for machine learning techniques and means that we never

train using the program or microarchitecture for which we will optimize. Hence, this is a fair evaluation methodology.

Best Performance Achievable In addition to comparison with O3, we want to evaluate our approach by assessing how

close its performance is to the maximum achievable. Although it is intractable to determine the best performance that can be

achieved by any set of optimization passes, as stated in section 4.2.1, we consider the performance of an iterative compiler

with 1000 evaluations as being an appropriate upper bound for a compiler using a single profile run.

5.2 Program/Microarchitecture Optimization Space

We first consider the performance of our compiler compared to the maximum speedups available. Figure 5(a) shows the

maximum speedups achievable, when selecting the best optimizations, relative to the default optimization level, O3, across

the program and microarchitectural spaces. The microarchitectures are ordered so that those with large speedups available

over O3 are on the left. The benchmarks are ordered so that those with large performance increases (such as search) are

on the right (as in figure 4). In the back corner, the maximum speedup achievable with the best compiler passes is obtained

by rijndael_e. This benchmark achieves a 4.85x speedup on a microarchitecture with a small instruction cache size. The

optimizations leading to this result do not include any loop optimizations (apart from moving loop-invariant code out of the

loops). In particular, no loop unrolling is performed because there is already extensive, optimized software loop unrolling

programmed into the source code.
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The performance of our compiler across the programs and microarchitectures is shown in figure 5(b). As is immedi-

ately apparent, it is almost identical to the performance achieved when using the best optimizations, figure 5(a). Our model

is highly accurate at predicting very good compiler passes across the programs and microarchitecture space. For all pro-

gram/microarchitecture pairs with large performance available, our approach is able to achieve significant speedups, as is

shown by the peaks for programs ispell, madplay, rijndael_d and rijndael_e. These graphs clearly demonstrate that our

model is able to capture the variation in speedups available across the program and microarchitecture spaces. The next two

sections conduct further evaluations of our model.

5.3 Evaluation Across Programs

This section focuses on the performance of our compiler on each program rather than examining the microarchitectural

space. Figure 6 shows the performance of each program when optimized with our portable optimizing compiler, relative

to compiling with O3, averaged across all microarchitecture configurations. The second bar, labeled Best, is the maximum

speedup achievable for each program. On average, our technique obtains a 1.16x performance improvement across all

programs and microarchitectures with just one profile run, achieving a 1.94x speedup for search on average.

For three benchmarks in particular (search, rijndael_e and rijndael_d), our scheme achieves significant speedups, ap-

proaching the best performance available. Figure 6 shows that our model is able to correctly identify good optimizations,

allowing these programs to exploit the large performance gains when available.

However, figure 6 also shows that some programs experience minor slowdowns compared with O3. Considering raw-

caudio for example, our approach achieves only a 0.97x speedup. This can be explained if we refer back to figure 4 where

we can see that there is negligible performance improvement to be gained over O3 for this program, even when picking the

best optimizations per microarchitecture. Unfortunately, for this benchmark, the majority of optimizations are detrimental

to performance and being less than 100% accurate in picking optimizations means that compiling with our scheme causes a

small amount of performance loss.

Considering our technique compared to the maximum speedup achievable, we approach Best in most cases. For some

programs, such as susan_e, we obtain over 95% of the maximum performance. However, for crc we achieve only 30%. The

reason for this shortfall is due to a subtlety in the source code of crc. The main loop within this benchmark updates a pointer

on every iteration, resulting in a large number of loads and stores. By performing function inlining and allowing a large

growth factor (parametermax-inline-insns-auto), this pointer increment is reduced to a simple register addition which in turn

reduces the number of data cache accesses. The performance counters are not sufficiently informative to enable our machine

learning model to capture this behavior. This prevents our model from selecting the best passes. However, the addition of

extra features, in particular code features [9], would enable us to pick this up and will be considered in future work.
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Figure 6. The performance of our approach

and the best optimizations achieved by iter-
ative compilation for each program, normal-

ized to O3 and averaged over all microarchi-
tectures.
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Figure 7. The performance of our approach

and the best optimizations achieved by iter-

ative compilation for each microarchitecture,
normalized to O3 and averaged across pro-

grams.

5.4 Evaluation Across Microarchitectures

We now turn our attention to the performance of our compiler across the microarchitecture space rather than across pro-

grams. Figure 7 shows the performance of our compiler compared the best performance available for each microarchitecture,

labeled Best. The microarchitectural configurations are ordered in terms of increasing speedup available over O3 (i.e. the

Best line). Those on the left have little speedup available whereas those on the right can gain significantly.

For our portable optimizing compiler we see that the amount of improvement over O3 varies from 1.08x to 1.35x. This

gives an average speedup of 1.16x across all programs and microarchitectures. It is important to see that our scheme closely

follows the trend of the Best optimizations, showing how our approach captures the variation between configurations, ex-

ploiting architectural features when performance improvements can be achieved.

Looking at figure 7 in more detail we can see that it is divided into roughly three regions. On the left, up to configuration

32, the first region has little performance improvement available. All microarchitectures in this area have a small data cache.

Unfortunately gcc has very few data access optimizations, meaning the available speedups are relatively small. Following

this is the second region where the Best optimizations gain an average 1.2x speedup and our scheme manages to capture a

respectable 1.16x.

Finally in the third section, after configuration 185, the available performance improvement increases dramatically. These

microarchitectures on the right have a small instruction cache, meaning that it is important to prevent code duplication

wherever possible. This is typical of embedded systems where code size is frequently an important optimization goal. The

performance counter specifying the instruction cache miss rate enables our model to learn this from the training programs.

In particular, our compiler learns that instruction scheduling (schedule-insns) and function inlining (inline-functions) must

be disabled to prevent code size increases. In the case of instruction scheduling, this increase is due to a subsequent register

allocation pass which emits more spill code for certain schedules. Here we can see an effect of the complex relationships
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between passes within the compiler. Nonetheless, our model is able to cope with these interactions and achieve the majority

of the speedups available in this area.

Summary We have shown that our portable optimizing compiler achieves an average 1.16x speedup over O3 across the

entire microarchitecture space for the MiBench benchmark suite. This is equivalent to 67% of the speedup achieved by the

Best optimization passes and is roughly consistent across the architecture configuration space. In addition, our approach is

able to achieve higher levels of performance whenever they are available, accurately following the trends in the optimization

space across programs and microarchitectures. The next sections analyzes our results, describing the passes that are important

in our space and how our model selects good optimization passes for new programs and microarchitectures.

5.5 Program Impact on Optimization Passes

Section 5.2 showed that our compiler’s performance closely follows the speedups achieved by the best optimizations for

each program/microarchitecture pair. We now consider how it achieves this by focusing on those optimizations that are most

likely to affect performance. Note that this is a post-hoc analysis and, in general, we cannot know in advance whether an

optimization will be likely to affect performance for a specific program and microarchitecture.

Figure 8 shows a Hinton diagram of the normalized mutual information between each optimization and the speedups

obtained on each program. Intuitively, mutual information gives an indication of the impact (good or bad) of a specific

compiler pass on each program. The larger the box, the greater the impact of the pass. However, as this is a summary across

all architectures an optimization may be important for just a few microarchitectures but not for the others, leading to a small

box being drawn.

It is clear from figure 8 that some optimizations are important across all programs, whereas others are only important to a

few benchmarks. For example, instruction scheduling (schedule-insns) is important for almost all benchmarks. As discussed

in section 5.4, in some cases this optimization has a negative impact on microarchitectures with a small instruction cache.

Loop unrolling (unroll-loops) is also an important optimization for many programs. For programs such as search, which

contains loops with a known number of iterations, it is important to consider this optimization to achieve good performance.

However, for others, such as rijndael_e, this optimization does not play a crucial role in achieving good performance because

extensive unrolling is already implemented in the source code.

The optimization passes affecting function inlining (inline-functions to param-inline-call-cost) have little impact on most

programs. However, for four programs, ispell, pgp, pgp_sa and say, these are the most important passes. By using the mutual

information shown in figure 8 our model focuses on those optimizations that are most likely to affect performance on a per

program/architecture basis.
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mance for each benchmark. The larger the boxnew, the
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the respective program.
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Figure 9. A Hinton diagram showing

the relationship between optimiza-

tions and features. The larger the
box, the more informative a feature

is in predicting whether to apply the
optimization.

5.6 Microarchitecture Impact on Compiler Passes

Having analyzed the optimizations that have most impact on different programs, we now turn our attention to the re-

lationship between the microarchitecture and compiler optimizations. Figure 9 presents another Hinton diagram showing

the microarchitectural impact on the best optimizations to apply. These results are averaged over all programs. The fea-

tures are separated into two groups: the first contains the eight architectural parameters d whilst the second contains the 11

performance counters c.

Of all the micro architectural parameters, the size of the instruction cache (denoted i_size) has the biggest impact on

compiler optimization. In particular, it strongly influences the optimizations that control function inlining (inline_functions)

and loop unrolling (unroll_loops) It is therefore critical to predict these optimizations correctly (based on i_size) to avoid

increasing the cache miss rate on small cache configurations. Furthermore, on larger cache configurations, it is important to

perform aggressive inlining and unrolling to exploit the full potential of the cache.

Now considering the performance counters, d, we can see that IPC has significant impact. This is used by the model

in conjunction with the other features to predict the most important optimizations to apply, such as block reordering (re-

order_blocks), global common subexpression elimination (gcse), instruction scheduling (schedule_insns), function inlining

(inline_functions) and loop unrolling(unroll_loops). The performance counters that record cache and branch predictor ac-

cess/miss rates also have significant impact on choosing the best optimization flags. Surprisingly, knowledge of register and
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Figure 10. The performance of our approach and the best optimizations achieved by iterative compi-

lation for each program, normalized to O3 and averaged over all microarchitectures on an extended
space.

functional unit usage has little importance in determining the correct compiler optimizations to apply.

While some of these observations may seem rather intuitive, current production compilers, such as gcc, always use the

same strategy when applying optimization passes, independently of the architectural parameters. One immediate recommen-

dation would be to make gcc’s unrolling and inlining optimizations sensitive to the instruction cache size and to make use of

branch predictor and cache access performance counters. However, this is just a post hoc analysis based on the results of this

space. The technique developed in this paper is micro-architectural space neutral enabling a compiler to automatically adapt

to any underlying microarchitecture, as shown in the next section.

6 Extending the Microarchitectural Space

While our approach works well on a predefined architecture space, it is reasonable to ask how would it perform if the

architecture space was changed at a later date. We therefore extended our space by varying two microarchitectural parameters

not considered in section 4.2.1, namely frequency and processor width. Frequency ranges from 200 to 600 MHz while issue

width is either 1 or 2. As a reference, the corresponding XScale values are 400 MHz and issue width 1.

Given this extended space, we then applied our approach, predicting the best optimization passes for it. Figure 10 shows

the resulting performance across programs, compared to the best performance available. In this new space, selecting the cor-

rect compiler optimization passes has a similar impact as before. The Best optimizations give an average 1.25x improvement

over O3 compared to 1.23x in the previous space. Our approach is able to achieve an improved average of 1.18x speedup.

This is comparable to the performance achieved on the previous space without any modification to our approach. If we were

to include new features that capture the behavior of the additional architectural parameters, the performance of our model

would be further improved.
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7 Related Work

There is a significant volume of prior work related to this paper which we discuss in the following seven sections.

Domain-Specific Optimizations Yotov et al. [41] investigated a model-driven approach for the ATLAS self-tuning linear

algebra library that uses the machine description to compute the optimal parameters of the optimizations. SPIRAL [33]

is another self-tuned library. It automatically generates high-performance code for digital signal processing by exploiting

domain-specific knowledge to search the parameter space at compile-time. These two systems both required domain-specific

knowledge and the use of iterative compilation to optimize themselves on the target system. They have to be retuned for

each new platform. This contrasts with our work where the compiler is built only once and optimizes across a range of

microarchitectures using just one profile run for any new program.

Iterative Compilation Iterative compilation optimizes a single program on a specific microarchitecture by searching the

optimization space. Cooper et al. [7] were amongst the first to use a genetic algorithm to solve the phase ordering problem,

achieving impressive code size reductions. Later, an extensive study of this problem was conducted, advocating the use of

multiple hill-climber runs [2]. Vuduc et al. [40] looked at the problem of optimizing a matrix multiplication library using a

statistical criterion to stop search. Kulkarni et al. [24] used their previously developed VISTA compiler infrastructure [43] to

search for effective optimization phases at a function level. They build a tree of effective transformation sequences and use it

to limit the search of the optimization space with a genetic algorithm.

Orthogonally to this, other researchers have focused on finding the best optimizations settings to apply. Triantafyllis et

al. [37] concentrated on a small set of optimizations that perform well on a given set of code segments. These are placed in a

search tree which is traversed to search for good optimization combinations for a new application. Pan and Eigenmann [31]

evaluated this techniques with their own algorithm that iteratively eliminates settings with the most negative effect from the

search space. Finally the Acovea tool [25] uses a genetic algorithm to find the best set of optimizations flags from gcc given a

program. Compared to our approach, all these techniques specifically tune each program on a per-program, per-architecture

basis by searching its optimization space. Conversely, our technique avoids search and recompilation by directly predicting

the correct set of compiler optimizations to apply on a new micro-architecture.

Analytic Models for Compilation The use of analytic models has also been investigated to speedup iterative compilation.

Triantafyllis et al. [37] used an analytic model to reduce the required time to evaluate different compiler optimizations

for different code segments. Zhao et al. [42] developed an approach named FPO to estimate the impact of different loop

transformations. To overcome the high cost of iterative compilation, Cooper et al. [6] developed ACME which uses the

concept of virtual execution; a simple analytic model that estimates the execution time of basic blocks. Analytic models have

proved to be useful for searching the optimization space quickly. However, since our model does not perform any search but

directly predicts the best optimization passes to apply, they are not applicable in this context.
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Machine-Learning Compilers Some of the first researchers to incorporate machine learning into optimizing compil-

ers were McGovern and Moss [30] who used reinforcement learning for the scheduling of straight-line code. Stephen-

son and Amarasinghe [34] looked at tuning the unroll factor using supervised classification techniques such as K-Nearest-

Neighbor and Support Vector Machines. All these approaches only consider one compiler optimization and, furthermore, are

specific to the target architecture.

Subsequent researchers have considered predictive models to automatically tune a compiler for an existing microarchi-

tecture. These models use program’s features to focus the search of the optimization space in promising areas. Agakov et

al. [1] used code features to characterize programs while Cavazos et al. [3] investigated the use of performance counters.

However, both still require a search of the space and as such are comparable to iterative compilation. To tackle this problem,

Cavazos [4] developed a logistic regressor that predicts which optimizations to apply at a method level within the Jikes RVM.

Recently the Milepost-gcc has been developed to drive the compiler optimization process based on machine learning [14].

Each of these approaches, however, has to be entirely retrained for any new platform and cannot be used for “compiler in the

loop” architecture design-space exploration. In a similar direction, Stephenson et al. [35] investigated the use of meta opti-

mizations by tuning the compiler heuristics using genetic programming and Hoste and Eeckhout [17] used genetic algorithms

to search for the best static compiler flags across various programs. In contrast to these static heuristics, we have developed

a model that predicts the best optimizations to apply based on the characteristics of any new program or microarchitecture.

Retargetable Compilers Integration of compiler and microarchitecture development is not new. Frameworks such as

Buildabong [13] and Trimaran [38] allow automatic exploration of both compiler and microarchitecture spaces. Other re-

searchers have focused on creating portable compilers such as LLVM [26]. However, these infrastructures focus purely on

portability from an engineering point of view: developing tools and optimizations that can be reused across many microar-

chitectures.

Microarchitectural Design Space Recently there has been significant interest in predicting the performance of different

programs across a microarchitectural design space. Schemes include linear regressors [20], artificial neural networks [18, 19],

radial basis functions [21, 39] and spline functions [27, 28]. These models obtain similar accuracy to each other [29]. Other

researchers have since propose new models that learn across programs [11, 23]. However, all these models are limited to

microarchitectural exploration and have not considered compiler optimizations.

Co-design Space Exploration Finally, other researchers have explored the microarchitecture and compiler optimization

co-design space on a per program basis. Vaswani et al. [39] focused primarily on allowing exploration of this space. They

built a model for a specific program that predicts the performance of compiler flags on microarchitecture configurations

for that program. However their model cannot handle unseen programs and its use is therefore limited and cannot be used

for portable optimization. Dubach et al. [10] and Desmet et al. [8] independently also explored the microarchitectural and
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compiler optimization co-design space. In addition, Dubach et al. [10] developed models that predict the performance that

the best set of compiler flags could achieve for a given program on any microarchitecture, without actually searching the

optimization space. However, these models are program-specific and predict program performance, rather than the actual

optimizations to apply. In contrast, our technique directly predicts the optimization passes to apply for any unseen program

on any unseen microarchitecture.

8 Conclusions and Future Work

This paper has presented a portable optimizing compiler that automatically learns the best optimization passes to apply

for any new program on any new microarchitecture. Using a machine learning approach, we can achieve on average a 1.16x

speedup over the default best optimization pass after just one profile run. This corresponds to 67% of the maximum speedup

available if we were to use iterative compilation with 1000 evaluations. We achieve this after a one-off training cost which

is amortized across all generations of the processor. We also show that similar performance is achieved when applied to a

new extended micro-architectural space. Future work will consider fine-grained optimizations at a function level and the

ability of the compiler to alter its optimization pass orderings. We will remove the single profile run we currently require by

considering abstract syntax tree features to characterize programs. Furthermore, we will look at reducing the training cost of

our approach by using clustering techniques which can dramatically reduce the amount of training data needed.
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