Collective Mind: cleaning up the research and
experimentation mess in computer engineering
using crowdsourcing, big data and machine
learning

Grigori Fursin
INRIA, France

Grigori.Fursin@cTuning.org

Abstract

Software and hardware co-design and optimization of HPC systems has be-
come intolerably complex, ad-hoc, time consuming and error prone due to enor-
mous number of available design and optimization choices, complex interactions
between all software and hardware components, and multiple strict requirements
placed on performance, power consumption, size, reliability and cost.

We present our novel long-term holistic and practical solution to this problem
based on customizable, plugin-based, schema-free, heterogeneous, open-source
Collective Mind repository and infrastructure with unified web interfaces and on-
line advise system. This collaborative framework distributes analysis and multi-
objective off-line and on-line auto-tuning of computer systems among many par-
ticipants while utilizing any available smart phone, tablet, laptop, cluster or data
center, and continuously observing, classifying and modeling their realistic behav-
ior. Any unexpected behavior is analyzed using shared data mining and predictive
modeling plugins or exposed to the community at cTuning.org for collaborative
explanation, top-down complexity reduction, incremental problem decomposition
and detection of correlating program, architecture or run-time properties (features).
Gradually increasing optimization knowledge helps to continuously improve op-
timization heuristics of any compiler, predict optimizations for new programs or
suggest efficient run-time (online) tuning and adaptation strategies depending on
end-user requirements. We decided to share all our past research artifacts includ-
ing hundreds of codelets, numerical applications, data sets, models, universal ex-
perimental analysis and auto-tuning pipelines, self-tuning machine learning based
meta compiler, and unified statistical analysis and machine learning plugins in a
public repository to initiate systematic, reproducible and collaborative research,
development and experimentation with a new publication model where experi-
ments and techniques are validated, ranked and improved by the community.

Keywords Collective Mind, crowdtuning, crowdsourcing auto-tuning and co-design, soft-
ware and hardware co-design and co-optimization, on-line tuning and learning, systematic be-
havior modeling, predictive modeling, data mining, machine learning, on-line advice system,
metadata, top-down optimization, incremental problem decomposition, decremental (differen-
tial) characterization, decremental analysis, complexity reduction, tuning dimension reduction,
customizable plugin-based infrastructure, public repository of knowledge, big data processing
and compaction, agile research and development, cTuning.org, c-mind.org , systematic and re-
producible research and experimentation, validation by community

1 Introduction, major challenges, and related work

1.1 Motivation

Continuing innovation in science and technology is vital for our society and requires ever in-
creasing computational resources. However, delivering such resources particularly with exascale
performance for HPC or ultra low power for embedded systems is becoming intolerably complex,
costly and error prone due to limitations of available technology, enormous number of available
design and optimization choices, complex interactions between all software and hardware com-
ponents, and growing number of incompatible tools and techniques with ad-hoc, intuition based
heuristics. As a result, understanding and modeling of the overall relationship between end-
user algorithms, applications, compiler optimizations, hardware designs, data sets and run-time
behavior, essential for providing better solutions and computational resources, became simply
infeasible as confirmed by numerous recent long-term international research visions about fu-
ture computer systems [12, 9, 19, 30, 8, 7]. On the other hand, the research and development
methodology for computer systems has hardly changed in the past decades: computer architec-
ture is first designed and later compiler is being tuned and adapted to the new architecture using
some ad-hoc benchmarks and heuristics. As a result, peak performance of the new systems is
often achieved only for a few previously optimized and not necessarily representative bench-
marks such as SPEC for desktops and servers or LINPACK for TOP500 supercomputer ranking,
while leaving most of the systems severely underperforming and wasting expensive resources
and power.

Automatic off-line and on-line performance tuning techniques were introduced nearly two
decades ago in an attempt to solve some of the above problems. These approaches treat computer
systems as a black box and explore their optimization parameter space empirically, i.e. compil-
ing and executing a user program multiple times with varying optimizations or designs (compiler
flags and passes, fine-grain transformations, frequency adaptation, cache reconfiguration, paral-
lelization, etc) to empirically find better solutions that improve execution and compilation time,
code size, power consumption and other characteristics [46, 37, 14, 17, 33, 26, 18, 35, 45, 42,
39, 40, 31]. Such techniques require little or no knowledge of the current platform and can
adapt programs to any given architecture automatically. With time, auto-tuning has been accel-
erated with various adaptive exploration techniques including genetic algorithms, hill-climbing
and probabilistic focused search. However, the main disadvantage of these techniques is an ex-
cessively long exploration time of large optimization spaces and lack of optimization knowledge
reuse among different programs, data sets and architectures. Moreover, all these exploration
steps (compilation and execution) must be performed with exactly the same setup by a given
user including the same program, generated with the same compiler on the same architecture
with the same data set, and repeated a large number of times to become statistically meaningful.

Statistical analysis and machine learning have been introduced nearly a decade ago to speed
up exploration and predict program and architecture behavior, optimizations or system configu-
rations by automatically learning correlations between properties of multiple programs, data sets
and architectures, available optimizations or design choices, and observed characteristics [46,
37,14, 17, 33, 26, 18, 35, 45, 42, 39, 40, 31, 44, 27, 28]. Often used by non-specialists, these ap-
proaches mainly demonstrate a potential to predict optimizations or adaptation scenario in some
limited cases, but they do not include deep analysis about machine learning algorithms, their se-
lection and scalability for ever growing training sets, optimization choices and available features
which are often problem dependent, are the major research challenges in the field of machine
learning for several decades, and far from being solved.

We believe that many of the above challenges and pitfalls are caused by the lack of a com-
mon experimental methodology, lack of interdisciplinary background, and lack of unified mech-
anisms for knowledge building and exchange apart from numerous similar publications where
reproducibility and statistical meaningfulness of results as well as sharing of data and tools is of-
ten not even considered in contrast with other sciences including physics, biology and artificial
intelligence. In fact, it is often impossible due to a lack of common and unified repositories, tools

and data sets. At the same time, there is a vicious circle since initiatives to develop common tools
and repositories to unify, systematize, share knowledge (data sets, tools, benchmarks, statistics,
models) and make it widely available to the research and teaching community are practically not
funded or rewarded academically where a number of publications often matter more than the re-
producibility and statistical quality of the research results. As a consequence, students, scientists
and engineers are forced to resort to some intuitive, non-systematic, non-rigorous and error-prone
techniques combined with unnecessary repetition of multiple experiments using ad-hoc tools,
benchmarks and data sets. Furthermore, we witness slowed down innovation, dramatic increase
in development costs and time-to-market for the new embedded and HPC systems, enormous
waste of expensive computing resources and energy, and diminishing attractiveness of computer
engineering often seen as "hacking” rather than systematic science.

2 Collective Mind approach
2.1 Back to basics

We would like to start with the formalization of the eventual needs of end-users and system
developers or providers. End-users generally need to perform some tasks (playing games on a
console, watching videos on mobile or tablet, surfing Web, modeling a new critical vaccine on
a supercomputer or predicting a new crash of financial markets using cloud services) either as
fast as possible or with some real-time constraints while minimizing or amortizing all associated
costs including power consumption, soft and hard errors, and device or service price. Therefore,
end-users or adaptive software require a function that can suggest most optimal design or opti-
mization choices ¢ based on properties of their tasks and data sets p, set of requirements r, as
well as current state of a used computing system s:

c=F(p,r,s)

This function is associated with another one representing behavior of a user task running on
a given system depending on properties and choices:

b= B(p,c,s)

This function is of particular importance for hardware and software designers that need to
continuously provide and improve choices (solutions) for a broad range of user tasks, data sets
and requirements while trying to improve own ROI and reduce time to market. In order to find
optimal choices, it should be minimized in presence of possible end-user requirements (con-
straints). However, the fundamental problem is that nowadays this function is highly non-linear
with such a multi-dimensional discrete and continuous parameter space which is not anymore
possible to model analytically or evaluate empirically using exhaustive search [10, 46, 21]. For
example, b is a behavior vector that can now include execution time, power consumption, com-
pilation time, code size, device cost, and any other important characteristic; p is a vector of
properties of a task and a system that can include semantic program features [38, 43, 11, 25],
dataset properties, hardware counters [15, 32], system configuration, and run-time environment
parameters among many others; ¢ represents available design and optimization choices includ-
ing algorithm selection, compiler and its optimizations, number of threads, scheduling, processor
ISA, cache sizes, memory and interconnect bandwidth, frequency, etc; and finally s represents
the state of the system during parallel execution of other programs, system or core frequency,
cache contentions and so on.

2.2 Interdisciplinary collaborative methodology

Current multiple research projects mainly show that it is possible to use some off-the-shelf on-
line or off-line adaptive exploration (sampling) algorithms combined with some existing models

to approximate above function and predict behavior, design and optimization choices for 70-
90% cases but in a very limited experimental setup. In contrast, our ambitious long-term goal
is to understand how to continuously build, enhance, systematize and optimize hybrid models
that can explain and predict all possible behaviors and choices while selecting minimal set of
representative properties, benchmarks and data sets for predictive modeling [36]. We reuse our
interdisciplinary knowledge in physics, quantum electronics and machine learning to build a
new methodology that can effectively deal with rising complexity of computer systems through
gradual and continuous top-down problem decomposition, analysis and learning. We also de-
velop a modular infrastructure and repository that allows to easily interconnect various available
tools and techniques to distribute adaptive probabilistic exploration, analysis and optimization of
computer systems among many users [3, 1] while exposing unexpected or unexplained behavior
to the community with interdisciplinary backgrounds particularly in machine learning and data
mining through unified web interfaces for collaborative solving and systematization.

2.3 Collective Mind infrastructure and repository

expose set
characteristics requirements

Universal Tuning and
Learning Module

expose expose system
Complex properties / [state Obiect
i > ec
hardwired information flow output of other plug|jr| and
com p uter continuously models .
build, validate, i . repOSItory
system 0)ne and 4 history (experience)
rui .
improve continuously
classification and observe
Sy stem l Dataset predictive models .-- ' exp (;se .
onthefly / an behavior and
! continuously .
explore keep history
possible
R.un. design and (choices,
fime optimization properties,
————— choices characteristics,
P Expose any |_ information flow SVSth state,
'ode « . < ata
c object)
T —

N “Aggregate knowledge and expose
to community at cTuning.org -
through unified Web services

Figure 1: Gradual decomposition, parameterization, observation, tuning and learning
of complex hardwired computer systems.

Collective Mind framework and repository (cM for short) enables continuous, collabora-
tive and agile top-down decomposition of the whole complex hardwired computer systems into
unified and connected subcomponents (modules) with gradually exposed various characteristics,
tuning choices (optimizations), properties and system state as conceptually shown in Figure 1.
At a coarse-grain level, modules serve as wrappers around existing command line tools such as
compilers, source-to-source transformers, code launchers, profilers, among many others. Such
modules are written in python for productivity and portability reasons, and can be launched from
command line in a unified way using Collective Mind front-end cm as following:

cm (module name or UID) { command) { unified meta information) — (original cmd)

These modules enable transparent monitoring of information flow, exposure of various char-
acteristics and properties in a unified way (meta information), and exploration or prediction of
design and optimization choices, while helping researchers to abstract their experimental setups
from constant changes in the system. Internally, modules can call each other using just one uni-
fied cM access function which uses a schema-free easily extensible nested dictionary that can be
directly serialized to JSON as both input and output as following:

r=cm_kernel.access({’cm_run_module_uoa’:<module name or UID>,
’cm_action’:<command>,
parameters})
if r[’cm_return’]>0:
print ’Error:’+r[’cm_error’]
exit(r[’cm_return’])

where command in each module is directly associated with some function. Since JSON can
also be easily transmitted through Web using standard http post mechanisms, we implemented a
simple cM web server that can be used for P2P communication or centralized repository during
crowdsourcing and possibly multi-agent based on-line learning and tuning.

Each module has an associated storage that can preserve any collections of files (whole
benchmark, data set, tool, trace, model, etc) and their meta-description in a JSON file. Thus
each module can also be used for any data abstraction and includes various common commands
standard to any repository such as load, save, list, search, etc. We use our own simple directory-
based format as following:

.cmr/<Module name or UID>/<Data entry UID>

where .cmr is an acronym for Collective Mind Repository. In contrast with using SQL-based
database in the first cTuning version that was fast but very complex for data sharing or exten-
sions of structure and relations, a new open format allows users to be database and technology-
independent with the possibility to modify, add, delete or share entries and whole repositories
using standard OS functions and tools like SVN, GIT or Mercury, or easily convert them to any
other format or database when necessary. Furthermore, cM can transparently use open source
JSON-based indexing tools such as ElasticSearch [4] to enable fast and powerful queries over
schema-free meta information. Now, any research artifact will not be lost and can now be refer-
enced and directly found using the so called cID (Collective ID) of the format: (module name
or UID):(data entry or UID).

Such infrastructure allows researchers and engineers to connect existing or new modules
into experimental pipelines like "research LEGO” with exposed characteristics, properties, con-
straints and states to quickly and collaboratively prototype and crowdsource their ideas or pro-
duction scenarios such as traditional adaptive exploration of large experimental spaces, multi-
objective program and architecture optimization or continuous on-line learning and run-time
adaptation while easily utilizing all available benchmarks, data sets, tools and models provided
by the community. Additionally, single and unified access function enables transparent repro-
ducibility and validation of any experiment by preserving input and output dictionaries for a
given experimental pipeline module. Furthermore, we decided to keep all modules inside reposi-
tory thus substituting various ad-hoc scripts and tools. With an additional cM possibility to install
various packages and their dependencies automatically (compilers, libraries, profilers, etc) from
the repository or keep all produced binaries in the repository, researchers now have an opportu-
nity to preserve and share the whole experimental setup in a private or public repository possibly
with a publication.

We started collaborative and gradual decomposition of large, coarse-grain components into
simpler sub-modules including decomposition of programs into kernels or codelets [48] as shown
in Figure 2 to keep complexity under control and possibly use multi-agent based or brain inspired
modeling and adaptation of the behavior of the whole computer system locally or during P2P

Compile Program

—> Analyze profile

Algorithm

selection

Code analysis &

Transformations
Process
Thread
Function
Codelet
Loop

\—> Instruction

—> Runcode —> Run-time

environment
System
Data set

Run-time
analysis

Run-time state

Gradually expose
some characteristics

(time) productivity, variable-

accuracy, complexity ...
time ...

time;
memory usage;
codesize ...

Gradually expose
some choices

Language, MPI, OpenMP, TBB, MapReduce ...

compiler flags; pragmas ...

transformation ordering;
polyhedral transformations;
transformation parameters;
instruction ordering ...

time; power ion ...

cost; size ...
size; values; description ...

time; precision ...

processor state; cache state

time; size ...

CPU/GPU; frequency; memory hierarchy ...
precision ...

hardware counters; power meters ...

helper threads; hardware counters ...

instrumentation; profiling ...

Figure 2: Gradual top-down decomposition of computer systems to balance coarse-
grain vs. fine-grain analysis and tuning depending on user requirements and expected
ROI

crowdsourcing. Such decomposition also allows community to first learn and optimize coarse-
grain behavior, and later add more fine-grain effects depending on user requirements, time con-
straints and expected return on investment (ROI) similar to existing analysis methodologies in
physics, electronics or finances.

2.4 Data and parameter description and classification

In traditional software engineering, all software components and their API are usually defined at
the beginning of the project to avoid modifications later. However, in our case, due to ever evolv-
ing tools, APIs and data formats, we decided to use agile methodology together with type-free
inputs and outputs for all functions focusing on quick and simple prototyping of research ideas.
Only when modules and their inputs and outputs become mature or validated, then (meta)data
and interface are defined, systematized and classified. However, they can still be extended and
reclassified at any time later.

For example, any key in an input or output dictionary of a given function and a given module
can be described as choice”, ”(statistical) characteristic”, “property” and “state”, besides a few
internal types including “module UID” or "data UID” or "class UID” to provide direct or seman-
tic class-based connections between data and modules. Parameters can be discrete or continuous
with a given range to enable automatic exploration. Thus, we can easily describe compiler opti-
mizations; dataset properties such as image or matrix size, architecture properties such as cache
size or frequency, represent execution time, power consumption, code size, hardware counters;
categorize benchmarks and codelets in terms of reaction to optimizations or as CPU or memory
bound, and so on.

2.5 OpenME interface for fine-grain analysis, tuning and adapta-
tion
Most of current compilers, applications and run-time systems are not prepared for easy and

straightforward fine-grain analysis and tuning due to associated software engineering complex-
ity, sometimes proprietary internals, possible compile or run-time overheads, and still occasional

- ¢M modules

#include <openme.h>

~
Any compiler with OpenME

Detect optimization
flags.

Y %

| Optimization N
" manager

Pass

A2
GCC Data Layer q N
AST, CFG, CF, etc

i

\

/ Alchemist - int main(void) {
OpenME plugin

<Dynamically linked openme_init(NULL,NULL,NULL,0);
™1 shared libraries> openme_callback("PROGRAM_START", NULL);
Extracting semantic (static)
program properties openme_callback(“SELECT_KERNEL", &adaptive_select);

(features) openme_callback("KERNEL_START", NULL);

Extracting code patterns if (adaptive_select==0) mm2_cpu(A, B, C, D, E);
elif (adaptive_select==1) cl_launch_kernel(A,B,C,D,E);

elif (adaptive_select==2) mm2Cuda(A, B, C, D, E, E_outputFromGpu);

OpenME
simple and universal event based interface

Selecting or predicting
optimizations

openme._callback("KERNEL_END", NULL);

Remove of add instructions NULL);
for differential analysis and
for multiple benchmark

\ generation

}

-~
§
]
S
S
s
1
&
<
g
5
o
i
o
5
@
t
8
=Y
3
<
J)

(b)

O

Figure 3: Event and plugin-based OpenME interface to ”open up” rigid tools (a) and
applications (b) for external fine-grain analysis, tuning and adaptation, and connect
them to cM

disbeliefs in effective run-time adaptation. Some extremes included either fixing, hardwiring
and hiding all optimization heuristics from end-users or oppositely exposing all possible opti-
mizations, scheduling parameters, hardware counters, etc. Some other available mechanisms to
control fine-grain compiler optimization through pragmas can also be very misleading since it is
not always easy or possible to validate whether optimization was actually performed or not.

Instead of developing yet another source-to-source tools or binary translators and analyzers
that always require enormous resources and effort often to reimplement functionality of existing
and evolving compilers and support evolving architectures, we developed a simple event and
plugin-based interface called Interactive Compilation Interface (ICI) to “open up” previously
hardwired tools for external analysis and tuning. ICI was written in plain C originally for Open64
and later for GCC, requires minimal instrumentation of a compiler and helps to expose or modify
only a subset of program properties or compiler optimization decisions through external dynamic
plugins based on researcher needs and usage scenario. This interface can easily evolve with the
compiler itself, has been successfully used in the MILEPOST project to build machine-learning
self-tuning compiler [25], and is now available in mainline GCC.

Based on this experience, we developed a new version of this interface (OpenME) [3] that
is used to “open up” any available tool such as GCC, LLVM, Open64, architecture simulator,
etc in a unified way as shown in Figure 3(a), or any application for example to train predic-
tive scheduler on heterogeneous many-core architectures [32] as shown in Figure 3(b). It can
be connected to cM to monitor application behavior in realistic environments or utilize on-line
learning modules to quickly prototype research ideas when developing self-tuning applications
that can automatically adapt to different datasets, underlying architectures particularly in virtual
and cloud environments, or react to changes in environment and run-time behavior. Since there
are some natural overheads associated with event invocation, users can substitute them with hard-
wired fast calls after research idea has been validated. We are developing associated Alchemist
plugin [3] for GCC to extract code structure, patterns and various properties to substitute and
unify outdated MILEPOST GCC plugin [5] for machine-learning based meta compilers.

3 Possible usage scenarios

We decided first to re-implement various analysis, tuning and learning scenarios from our past
research as cM modules combined into universal compilation and execution pipeline to give the
community a common reproducible base for further research and experimentation. Furthermore,
rather than just showing speedups, our main focus is also to use our distributed framework sim-

ilar to web crawlers to search for unusual or unexpected behavior that can be exposed to the
community for further analysis, advise, ranking, commenting, and eventual improvement of cM
to take such behavior into account.

3.1 Collaborative observation and exploration

800,000

/’ 5.0 o
\ 785.000 o®
State A [\

> | \
A‘f R « | o =

770,000

Code size (bytes)

755,000

740,000 °
2 9 16 2 a0

) 0N Execution time (sec.)

(a) (b)

Figure 4: (a) execution time variation of a susan corner codelet with the same dataset
on Samsung Galaxy Y for 2 frequency states; (b) variation in execution time vs code size
during GCC 4.7.2 compiler flag auto-tuning for the same codelet on the same mobile
phone where yellow rhombus represents -O3 and red circles show Pareto frontier - all
data and modules are available for reproduction at c-mind.org/repo

Having common and portable framework with exposed characteristics, properties, choices
and state in a unified way allows us to collaboratively observe, optimize, learn and predict pro-
gram behavior on any existing system including mobile phones, tablets, desktops, servers, cluster
or cloud nodes in realistic environment transparently and on the fly instead of using a few ad-
hoc and often non-representative benchmarks, data sets and platforms. Furthermore, it elegantly
solves a common problem of a lack of experimental data to be able to properly apply machine
learning techniques and make statistically meaningful assumptions that slowed down many re-
cent projects on applying machine learning to compilation and architecture.

For example, Figure 4(a) shows variation of an execution time of an image corner detec-
tion codelet with the same dataset (image) on a Samsung Galaxy Y mobile phone with ARM
processor using modified Collective Mind Node [2]. Our cM R-based statistical module reports
that distribution is not normal that usually results in discarding this experiment in most of the
research projects. However, by exposing and analyzing this relatively simple case, we found that
processor frequency was responsible for this behavior thus adding it as a new parameter to the
”state” vector of our experimental pipeline to effectively separate such cases. Furthermore, we
can use minimal execution time for SW/HW co-design as the best what a given code can achieve
on a given architecture, or expected execution time for realistic end-user program optimization
and adaptation.

3.2 Adaptive exploration (sampling) and dimensionality reduction

Now, we can easily distribute exploration of any set of choices vs multiple properties and char-
acteristics in a computer system among many users. For example, Figure 4(b) shows random ex-
ploration of Sourcery GCC compiler flags versus execution time and binary size on off-the-shelf
Samsung mobile phones with ARMv7 processor for image processing codelet while Figure 5
shows exploration of dataset parameters for LU-decomposition numerical kernel on GRID5000
machines with Intel Core2 and SandyBridge processors. Since all characteristics are usually
dependent, we can apply cM plugin (module) to detect universal Paretto fronter on the fly in
multi-dimensional space (currently not optimal) during on-line exploration and filter all other
cases. A user can choose to explore any other available characteristic in a similar way such

as power consumption, compilation time, etc depending on usage scenario and requirements.
In order to speed up random exploration further, we use probabilistic focused search similar to
ANOVA and PCA described in [20, 28] that can suggest most important tuning/analysis dimen-
sions with likely highest speedup or unusual behavior, and guide further finer-grain exploration
in those areas. Collective exploration is critical to build and update a realistic training set for
machine-learning based self-tuning meta-compiler cTuning-CC to automatically and continu-
ously improve default optimization heuristic of GCC, LLVM, ICC, Open64 or any other com-
piler connected to cM [25, 6].

3.3 On-line learning

Powered by Collective Mind

CPI

. . .
2000 3000 4000 5000
Dataset size N

Figure 5: On-line learning (predictive modeling) of a CPI behavior of ludcmp on 2
different platforms (Intel Core2 vs Intel i5) vs matrix size N and cache size

Crowdtuning has a side effect - generation and processing of huge amount of data that is
well-known in other fields as a ’big data” problem. However, in our past work on online tuning,
we showed that it is possible not only to learn behavior and find correlations between character-
istics, properties and choices to build models of behavior on the fly at each client or program, but
also to effectively compact experimental data keeping only representative or unexpected points,
and minimize communications between cM nodes thus making cM a giant, distributed learning
network to some extent similar to brain [24, 36, 28].

Figure 5 demonstrates how on-line learning is performed in our framework using LU-decomposition
benchmark as an example, CPI characteristic, and 2 Intel-based platforms (Intel Core2 Centrino
T7500 Merom 2.2GHz L1=32KB 8-way set-associative, L2=4MB 16-way set associative - red
dots vs. Intel Core 15 2540M 2.6GHz Sandy Bridge L1=32KB 8-way set associative, L2=256KB
8-way set associative, L3=3MB 12-way set associative - blue dots). At the beginning, our sys-
tem does not have any knowledge about behavior of this (or any other) benchmark, so it simply
observes and stores available characteristics while collecting as many properties of the whole
system as possible (exposed by a researcher or user). At each step, system processes all histor-
ical observations using various available predictive models such as SVM or MARS in order to
find correlations between properties and characteristics. In our example, after sufficient amount
of observations, system can build a model that automatically correlated data set size N, cache
size and CPI (in our case combination of linear models B-F that reflect memory hierarchy of
a particular system) with nearly 100% prediction. However, system always continue observing
behavior to continuously validate it against existing model in order to detect discrepancies (failed
predictions). In our case, the system eventually detects outliers A that are due to cache alignment

problems. Since off-the-shelf models rarely handle such cases, our framework allows to exclude
such cases from modeling and expose them to the community through the unified Web services
to reproduce and explain this behavior, find relevant features and improve or optimize existing
models. In our case, we managed to fit a hybrid rule-based model that first validates cases where
data set size is a power of 2, otherwise it uses linear models as functions of a data set and cache
size.

Systematic characterization (modeling) of a program behavior across many systems and data
sets allows researchers or end-users to focus further optimizations (tuning) only on representa-
tive areas with distinct behavior while collaboratively building an on-line advice system. In the
above example, we evaluated and prepared the following advices for optimizations: points A can
be optimized using array padding; area B can profit from parallelization and traditional compiler
optimizations targeting ILP; areas C-E can benefit from loop tiling; area F and points A can ben-
efit from reduced processor frequency to reduce power consumption using cM online adaptation
plugin. Since auto-tuning is continuously performed, we will release final optimization details
at cM live repository [1] during symposium.

Statically-compiled adaptive binaries and libraries

'
I
|
1
1
|
! EiEE Monitor run-time behavior or architectural
E dataset changes (in virtual, reconfigurable or
| a P
! features heterogeneous environments) using timers Machine learning
>:< or performance counters techniques to find
E \\A / mapping between
! different run-time
z Selection (adaption) plugin optimized contexts and
! (compacted) for low run-time overhead representative
|
| // / \ versions
v
Original Plugin Plugin Plugin
hot function function function
function Version, Version, Versiony \ Crowdsourcinig auto-
Minimal representative set of versions for the following optimization cases to tuning with multiple
inimi. time, power ption and code-size across all available datasets
datasets:
* optimizations for different datasets
 optimizations/compilation for different architectures (heterogeneous or
reconfigurable processors with different ISA such as GPGPU, CELL, etc or with

the same ISA with extensions such as 3dnow, SSE, etc, or asymmetric multi-core
architectures)

* optimizations for different program phases, different run-time environment

behavior, or different frequency

Figure 6: Systematizing and unifying split (staged) compilation for statically built
adaptive applications using crowdtuning and machine learning

Gradually increasing and systematized knowledge in the repository in form of models can
now be used to detect and characterize an abnormal program or system behavior, suggest future
architectural improvements, or predict most profitable program optimizations, run-time adap-
tation scenarios and architecture configurations depending on user requirements. For example,
this knowledge can be effecitvely used for split (staged) tuning to build static multi-versioning
applications with cM plugins for phase-based adaptation [24] or predictive scheduling [32] in
heterogeneous systems that can automatically adjust their behavior at run-time to varying data
sets, environments, architectures and system state by selecting appropriate versions or changing
frequency to maximize performance and minimize power consumption, while avoiding complex
recompilation frameworks as conceptually shown in Figure 6.

10

3.4 Benchmark automatic generation and decremental character-
ization

Projects on applying machine learning to auto-tuning suffer from yet another well-known prob-
lem: lack of benchmarks. Our experience with hundreds of codelets and thousands of data
sets [23, 16, 25] shows that they are still not enough to cover all possible properties and behavior
of computer systems. Generating numerous synthetic benchmarks and data sets is theoretically
possible but will result in additional explosion in analysis and tuning dimensions. Instead, we use
existing benchmarks, codelets and even data sets as templates, and utilize Alchemist plugin [3]
for GCC to randomly or incrementally modify them by removing, modifying or adding various
instructions, basic blocks, loops, and thus generating. Naturally, we ignore crashing variants
of the code and continue evolving only the working ones. Importantly, we use this approach
not only to extend realistic training sets, but also to gradually (iteratively) identify various be-
havior anomalies and detect code properties to explain these anomalies and improve predicting
modeling without any need for slow and possibly imprecise system/architecture simulator or nu-
merous and sometimes misleading hardware counters as originally presented in [27, 21]. For
example, we can iteratively scalarize memory accesses to characterize code and data set as CPU
or memory bound [21] (line X in Figure 5 shows ideal codelet behavior when all floating point
memory accesses are NOPed). Additionally, we use Alchemist plugin to extract code structure,
patterns and other properties to improve our cTuning CC machine-learning based meta com-
piler connected to GCC, LLVM, Open64, Intel and Microsoft compilers, and to guide SW/HW
co-design.

4 Conclusions and future work

With the continuously rising number of workshops, conferences, journals, symposiums, consor-
tiums, networks of excellence, publications, tools and experimental data, and at the same time de-
creasing number of fundamentally new ideas and reproducible research in computer engineering,
we strongly believe that the only way forward now is to start collaborative systematization and
unification of available knowledge about design and optimization of computer systems. How-
ever, unlike some existing projects that mainly suggest or attempt to share raw experimental data
and related tools, and somehow validate results by the community, or redesign the whole soft-
ware and hardware stack from scratch, we use our interdisciplinary background and experience
to develop the first to our knowledge integrated, extensible and collaborative infrastructure and
repository (Collective Mind) that can represent, preserve and connect directly or semantically all
research artifacts including data, executable code and interfaces in a unified way.

We hope that our collaborative, evolutionary and agile methodology, and extensible plugin-
based Lego-like framework can help to address current fundamental challenges in computer
engineering while bringing together interdisciplinary communities similar to Wikipedia to con-
tinuously validate, systematize and improve collective knowledge about designing and optimiz-
ing whole computer systems, and extrapolate it to build faster, more power efficient, reliable and
adaptive devices and software. We hope that community will continue developing more plugins
(modules) to plug various third-party tools including TAU [41], Periscope [13], Scalasca [29], In-
tel vTune and many others to cM, or continue gradual decomposition of programs into codelets
and complex tools into simpler connected self-tuning modules while crowdsourcing learning,
tuning and classifying of their behavior. We started building a large public repository of realis-
tic behavior of multiple programs in realistic environments with realistic data sets (’big data”)
that should allow the community to quickly reproduce and validate existing results, and focus
their effort on developing novel tuning techniques combined with data mining, classification
and predictive modeling rather than wasting time on building individual experimental setups.
It can also be used to address the challenge of collaboratively finding minimal representative
set of benchmarks, codelets and datasets covering behavior of most of existing computer sys-
tems, detecting correlations in a collected data together with combinations of relevant properties

11

(features), pruning irrelevant ones, systematizing and compacting existing experimental data,
removing or exposing noisy or wrong experimental results. It can also be effectively used to
validate and compact existing models including roofline [47] or capacity [34] ones, and adap-
tation techniques including multi-agent based using cM P2P communication, classify programs
by similarities in models, by reactions to optimizations [28] and to semantically non-equivalent
changes [27], or collaboratively develop and optimize new complex hybrid predictive models
that from our past practical experience can not yet be fully automated thus using data mining and
machine learning as a helper rather than panacea at least at this stage.

Beta proof-of-concept version of a presented infrastructure and its documentation is avail-
able for download at [3], while pilot Collective Mind repository is now live at c-mind.org/repo [1]
and currently being populated with our past research artifacts including hundreds of codelets and
benchmarks [25], thousands of data sets [23, 16], universal compilation and execution pipeline
with adaptive exploration (tuning), dimension reduction and statistical analysis modules, and
classical off-the-shelf or hybrid predictive models. Importantly, presented concepts have already
been successfully validated in several academic and industrial projects with IBM, ARC (Syn-
opsys), CAPS, CEA and Intel, and we gradually release all our experimental data from these
projects including unexplained behavior of computer systems and misbehaving models. Finally,
the example of a Collective Mind Node to crowdsource auto-tuning and learning using Android
mobile phones and tables is available at Google Play [2].

We hope that our approach will help to shift current focus from publishing only good ex-
perimental results or speedups, to sharing all research artifacts, validating past techniques, and
exposing unexplained behavior or encountered problems to the interdisciplinary community for
reproducibility and collaborative solving and ranking. We also hope that Collective Mind frame-
work will be of help to a broad range of researchers even outside of computer engineering not to
drawn in their experimentation while processing, systematizing, and sharing their scientific data,
code and models. Finally, we hope that Collective Mind methodology will help to restore the
attractiveness of computer engineering making it a more systematic and rigorous discipline [22].

Acknowledgments

Grigori Fursin was funded by EU HiPEAC postdoctoral fellowship (2005-2006) and by the EU
MILEPOST project (2007-2010) where he originally developed and applied his statistical plugin-
based crowdtuning technology to enable realistic and on-line tuning (training) of a machine-
learning based meta-compiler cTuning CC together with MILEPOST GCC, and later by French
Intel/CEA Exascale Lab (2010-2011) where he extended this concept and developed customized
codelet repository and auto-tuning infrastructure for software and hardware co-design and co-
optimization of Exascale systems together with his team (Yuriy Kashnikov, Franck Talbart, and
Pablo Oliveira). Grigori is grateful to Francois Bodin and CAPS Entreprise for sharing codelets
from the MILEPOST project and for providing an access to the latest Codelet Finder tool, to
David Kuck and David Wong from Intel Illinois, and Davide del Vento from NCAR for interest-
ing discussions and feedback during development of cTuning technology. Grigori is also very
thankful to cTuning and HIPEAC communities as well as his colleagues from ARM and STMi-
croelectronics for motivation, many interesting discussions and feedback during development
of Collective Mind repository and infrastructure presented in this paper. Finally he would like
to thank GRID5000 project and community for providing an access to powerful computational
resources.

References

[1] Collective Mind Live Repo: public repository of knowledge about design and optimization
of computer systems. http://c-mind.org/repo.

12

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

Collective ~ Mind Node: Android application connected to Collec-
tive ~ Mind repository to crowdsource characterization and optimiza-
tion of computer systems using off-the-shelf mobile phones and tablets.
https://play.google.com/store/apps/details?id=com.collective_mind.node.

Collective Mind: open-source plugin-based infrastructure and repository for systematic
and collaborative research, experimentation and management of large scientific data.
http://cTuning.org/tools/cm.

ElasticSearch: open source distributed real time search and analytics.
http://www.elasticsearch.org.

MILEPOST GCC: public collaborative R&D website. http://cTuning.org/
milepost-gcc.

MILEPOST project archive (Machlne Learning for Embedded PrOgramS opTimization).
http://cTuning.org/project-milepost.

PRACE: partnership for advanced computing in europe. http://www.prace-project.eu.

Ubiquitous high performance computing (uhpc). Technical Report DARPA-BAA-10-37,
USA, 2010.

The HiPEAC vision on high-performance and embedded architecture and compilation
(2012-2020). http://www.hipeac.net/roadmap, 2012.

B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski, H.-P. Charles, C. Eisen-
beis, J. Gurd, J. Hoogerbrugge, P. Hu, W. Jalby, P. Knijnenburg, M. O’Boyle, E. Ro-
hou, R. Sakellariou, H. Schepers, A. Seznec, E. Stohr, M. Verhoeven, and H. Wijshoff.
OCEANS: Optimizing compilers for embedded applications. In Proc. Euro-Par 97, vol-
ume 1300 of Lecture Notes in Computer Science, pages 1351-1356, 1997.

F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M. O’Boyle, J. Thomson, M. Tou-
ssaint, and C. Williams. Using machine learning to focus iterative optimization. In Pro-
ceedings of the International Symposium on Code Generation and Optimization (CGO),
2006.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patter-
son, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of parallel
computing research: a view from Berkeley. Technical Report UCB/EECS-2006-183, Elec-
trical Engineering and Computer Sciences, University of California at Berkeley, Dec. 2006.

S. Benedict, V. Petkov, and M. Gerndt. Periscope: An online-based distributed performance
analysis tool. pages 1-16, 2010.

F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation in
a non-linear optimisation space. In Proceedings of the Workshop on Profile and Feedback
Directed Compilation, 1998.

J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle, and O. Temam. Rapidly se-
lecting good compiler optimizations using performance counters. In Proceedings of the
International Symposium on Code Generation and Optimization (CGO), March 2007.

Y. Chen, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and C. Wu. Evaluating iterative
optimization across 1000 data sets. In In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI, 2010.

K. Cooper, P. Schielke, and D. Subramanian. Optimizing for reduced code space using
genetic algorithms. In Proceedings of the Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), pages 1-9, 1999.

K. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers for the 21st
century. Journal of Supercomputing, 23(1), 2002.

J. Dongarra et.al. The international exascale software project roadmap. Int. J. High Per-
form. Comput. Appl., 25(1):3-60, Feb. 2011.

13

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. Probabilistic source-level optimisation
of embedded programs. In Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), 2005.

G. Fursin. [lterative Compilation and Performance Prediction for Numerical Applications.
PhD thesis, University of Edinburgh, United Kingdom, 2004.

G. Fursin. HiPEAC thematic session at ACM FCRC’13: Making computer engineering
a science. http://www.hipeac.net/thematic-session/making-computer-engineering-science,
2013.

G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam. MiDataSets: Creating the conditions
for a more realistic evaluation of iterative optimization. In Proceedings of the International
Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2007),
January 2007.

G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method for quickly evaluat-
ing program optimizations. In Proceedings of the International Conference on High Per-
formance Embedded Architectures & Compilers (HiPEAC 2005), pages 29-46, November
2005.

G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam, M. Namolaru, E. Yom-
Tov, B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard, E. Ashton, E. Bonilla,
J. Thomson, C. Williams, and M. F. P. OBoyle. Milepost gcc: Machine learning enabled
self-tuning compiler. International Journal of Parallel Programming, 39:296-327, 2011.
10.1007/s10766-010-0161-2.

G. Fursin, M. O’Boyle, and P. Knijnenburg. Evaluating iterative compilation. In Proceed-
ings of the Workshop on Languages and Compilers for Parallel Computers (LCPC), pages
305-315, 2002.

G. Fursin, M. F. P. O’Boyle, O. Temam, and G. Watts. A fast and accurate method for
determining a lower bound on execution time: Research articles. Concurrency: Practice
and Experience, 16(2-3):271-292, Jan. 2004.

G. Fursin and O. Temam. Collective optimization: A practical collaborative approach.
ACM Transactions on Architecture and Code Optimization (TACO), 7(4):20:1-20:29, Dec.
2010.

M. Geimer, F. Wolf, B. J. N. Wylie, E. Abrahém, D. Becker, and B. Mohr. The scalasca
performance toolset architecture. Concurr. Comput. : Pract. Exper., 22(6):702-719, Apr.
2010.

T. Hey, S. Tansley, and K. M. Tolle, editors. The Fourth Paradigm: Data-Intensive Scien-
tific Discovery. Microsoft Research, 2009.

K. Hoste and L. Eeckhout. Cole: Compiler optimization level exploration. In Proceedings
of the International Symposium on Code Generation and Optimization (CGO), 2008.

V. Jimenez, 1. Gelado, L. Vilanova, M. Gil, G. Fursin, and N. Navarro. Predictive run-
time code scheduling for heterogeneous architectures. In Proceedings of the International
Conference on High Performance Embedded Architectures & Compilers (HIPEAC 2009),
January 2009.

T. Kisuki, P. Knijnenburg, and M. O’Boyle. Combined selection of tile sizes and unroll
factors using iterative compilation. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 237-246, 2000.

D. Kuck. Computational capacity-based codesign of computer systems. High-Performance
Scientific Computing, 2013.

P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey, Y. Paek,
and K. Gallivan. Finding effective optimization phase sequences. In Proceedings of the

Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages
12-23, 2003.

14

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

L. Luo, Y. Chen, C. Wu, S. Long, and G. Fursin. Finding representative sets of opti-
mizations for adaptive multiversioning applications. In 3rd Workshop on Statistical and
Machine Learning Approaches Applied to Architectures and Compilation (SMART09),
colocated with HIPEAC’09 conference, January 2009.

F. Matteo and S. Johnson. FFTW: An adaptive software architecture for the FFT. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 3, pages 1381-1384, Seattle, WA, May 1998.

A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to automatic pro-
duction of compiler heuristics. In Proceedings of the International Conference on Artificial
Intelligence: Methodology, Systems, Applications, LNCS 2443, pages 41-50, 2002.

Z. Pan and R. Eigenmann. Rating compiler optimizations for automatic performance tun-
ing. In Proceedings of the International Conference on Supercomputing, 2004.

Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler optimizations for
automatic performance tuning. In Proceedings of the International Symposium on Code
Generation and Optimization (CGO), pages 319-332, 2006.

S. S. Shende and A. D. Malony. The tau parallel performance system. Int. J. High Perform.
Comput. Appl., 20(2):287-311, May 2006.

B. Singer and M. Veloso. Learning to predict performance from formula modeling and
training data. In Proceedings of the Conference on Machine Learning, 2000.

M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta optimization: Im-
proving compiler heuristics with machine learning. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’03), pages 77—
90, June 2003.

M. Tartara and S. Crespi-Reghizzi. Continuous learning of compiler heuristics. TACO,
9(4):46, 2013.

S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August. Compiler optimization-
space exploration. In Proceedings of the International Symposium on Code Generation
and Optimization (CGO), pages 204-215, 2003.

R. Whaley and J. Dongarra. Automatically tuned linear algebra software. In Proceedings
of the Conference on High Performance Networking and Computing, 1998.

S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance
model for multicore architectures. Commun. ACM, 52(4):65-76, Apr. 2009.

S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using a “codelet” program
execution model for exascale machines: position paper. In Proceedings of the Ist In-
ternational Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era,
EXADAPT 11, pages 64-69, New York, NY, USA, 2011. ACM.

15

