
Alchemy group, INRIA Futurs, FranceAlchemy group, INRIA Futurs, France

Adaptive and feedback Adaptive and feedback
driven compilation and driven compilation and

optimizationoptimization

Grigori FursinGrigori Fursin

My background

•• Ph.D. degree from the University of Edinburgh, UK (1999 Ph.D. degree from the University of Edinburgh, UK (1999 -- 2004)2004)

Program iterative optimizations and performance predictionProgram iterative optimizations and performance prediction

•• Research scientist at INRIA Futurs, France (2004 Research scientist at INRIA Futurs, France (2004 ……))

Iterative feedback directed compilationIterative feedback directed compilation
RunRun--time adaptation and optimizationtime adaptation and optimization
Machine learningMachine learning
Architecture design space explorationArchitecture design space exploration

• Collaborations:

IBM, NXP, STMicro, ARC, ARM, CAPS Enterprise
University of Edinburgh
Universitat Politechinca de Catalunya (UPC)
University of Illinois at Urbana-Champaign (UIUC)

Course overview

Assume that all understand basics of computer architecture and cAssume that all understand basics of computer architecture and compilation ompilation
process. process.

Focus on compilers that map user program to machine codeFocus on compilers that map user program to machine code

Explain general major compilation problems instead of focusing oExplain general major compilation problems instead of focusing on individual n individual
components components

Describe current major research areas for compilation and optimiDescribe current major research areas for compilation and optimizationzation

•• MotivationMotivation

•• BackgroundBackground

•• Feedback directed compilation and optimizationFeedback directed compilation and optimization

•• Dynamic compilation and optimizationDynamic compilation and optimization

•• Machine learning and future directionsMachine learning and future directions

Motivation

Are compilers important?Are compilers important?

Motivation

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power
consumption, size, response, reliability, portability and designconsumption, size, response, reliability, portability and design timetime..

Motivation

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power
consumption, size, response, reliability, portability and designconsumption, size, response, reliability, portability and design timetime..

HighHigh--performance computing systems rapidly evolve toward performance computing systems rapidly evolve toward
complex heterogeneous multicomplex heterogeneous multi--core systemscore systems

dramatically increased optimization time dramatically increased optimization time

Motivation

Optimizing compilers play a key role in Optimizing compilers play a key role in producing executable codes quickly producing executable codes quickly
and automaticallyand automatically while satisfying all the above requirements for a broad while satisfying all the above requirements for a broad
range of programs and architectures. range of programs and architectures.

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power
consumption, size, response, reliability, portability and designconsumption, size, response, reliability, portability and design timetime..

HighHigh--performance computing systems rapidly evolve toward performance computing systems rapidly evolve toward
complex heterogeneous multicomplex heterogeneous multi--core systemscore systems

dramatically increased optimization time dramatically increased optimization time

Motivation

Is it easy? Is it easy?
What are the challenges?What are the challenges?

Motivation

Is it easy? Is it easy?
What are the challenges?What are the challenges?

Before answering these questions we need to look at the basics oBefore answering these questions we need to look at the basics of the f the
current compilerscurrent compilers

Compiler background

•• Compilers translate user programs to machine codeCompilers translate user programs to machine code

•• Translation must be correctTranslation must be correct

•• Needed to hide machine complexityNeeded to hide machine complexity

•• Compilers need to optimize code to satisfy various requirementsCompilers need to optimize code to satisfy various requirements

•• Compilers automatically translate. Can we automate compiler Compilers automatically translate. Can we automate compiler
construction?construction?

•• Compilers generating compilers exits Compilers generating compilers exits -- GCC, GCC, CoSyCoSy

•• Automatic construction of compiler optimization is very challenAutomatic construction of compiler optimization is very challengingging

Compiler background

Some current popular static optimizing compilers for Linux:Some current popular static optimizing compilers for Linux:

•• GCC (GNU Compiler Collection)GCC (GNU Compiler Collection)

http://http://gcc.gnu.orggcc.gnu.org

•• Open64 Open64

http://www.open64.nethttp://www.open64.net

•• Intel CompilersIntel Compilers

http://www.intel.com/cd/software/products/asmohttp://www.intel.com/cd/software/products/asmo--nana//
eng/compilers/284264.htmeng/compilers/284264.htm

•• PathScalePathScale CompilersCompilers

http://http://www.pathscale.comwww.pathscale.com

Compiler structure

•• Compiler structure changed little since 1950s: consists of a liCompiler structure changed little since 1950s: consists of a linear near
sequence of passessequence of passes

•• Lexical Analysis: Lexical Analysis: Finds and verifies basic syntactic items, Finds and verifies basic syntactic items, lexemslexems, ,
tokens using finite state automatatokens using finite state automata

•• Syntax Analysis: Syntax Analysis: Checks tokens following a grammar and builds an Checks tokens following a grammar and builds an
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Semantic Analysis:Semantic Analysis: Checks that all names are consistently used and Checks that all names are consistently used and
builds a symbol tablebuilds a symbol table

•• Code optimization and generation:Code optimization and generation: Optimize code using different Optimize code using different
intermediate formats (IR) and generate machine instructions for intermediate formats (IR) and generate machine instructions for a a
specific architecture while keeping the meaning of the programspecific architecture while keeping the meaning of the program

sourcesource

codecode

Compiler structure

•• Front EndFront End translates translates ““strings of charactersstrings of characters”” into a structured High Level into a structured High Level
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Restructurer and Middle EndRestructurer and Middle End performs machine independent performs machine independent
optimizations including optimizations including ““sourcesource--toto--source transformationssource transformations”” and outputs a and outputs a
Lower Level Intermediate Representation (IR)Lower Level Intermediate Representation (IR)

•• Can be several Can be several IRsIRs to simplify program to simplify program anlsysisanlsysis, optimizations and , optimizations and
code generationcode generation

•• Many choices for IR (affect form and strength of program analysMany choices for IR (affect form and strength of program analysis is
and optimizations)and optimizations)

•• Back EndBack End generally performs machine code generation including generally performs machine code generation including
instruction scheduling and register allocationinstruction scheduling and register allocation

Front Front
EndEnd

HLHL

ASTAST
RestructRestruct

HLHL

ASTAST
Middle Middle

EndEnd
LowLow

IRIR
Back Back
EndEnd

machinemachine

codecode

IRIR

Optimizer structure

Many optimization passes (Many optimization passes (inlininginlining; dead code elimination; constant ; dead code elimination; constant
propagation; loop transformations including loop tiling, interchpropagation; loop transformations including loop tiling, interchange, fusionange, fusion--
fisionfision, , vectorizationvectorization, unrolling; automatic parallelization, etc, unrolling; automatic parallelization, etc) with the fixed) with the fixed
linear orderlinear order

Optimization passes can be often Optimization passes can be often turned on and offturned on and off using compiler using compiler
command line flagscommand line flags

Passes are generally applied to either the Passes are generally applied to either the whole programwhole program (Inter(Inter--Procedural Procedural
Optimizations) or at a Optimizations) or at a function (procedure) levelfunction (procedure) level..

Transformations within passes are often applied on a loop or basTransformations within passes are often applied on a loop or basicic--block block
level with the fixed linear order and can be level with the fixed linear order and can be parametricparametric

Some transformations can be selected by compiler command line flSome transformations can be selected by compiler command line flags but ags but
optimization heuristic is often hiddenoptimization heuristic is often hidden from the userfrom the user

Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

IRIR

Optimizer structure

Is this working well?Is this working well?

(DEMO(DEMO11))

Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

IRIR

Optimizer structure

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) 1) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 160x160][matrix size 160x160]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture

Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

IRIR

Optimizer structure

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) 1) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 160x160][matrix size 160x160]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture

Wow! Found good compiler flag! LetWow! Found good compiler flag! Let’’s use it all the time!s use it all the time!

Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

IRIR

Optimizer structure

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) 1) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 160x160][matrix size 160x160]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture

Wow! Found good compiler flag! LetWow! Found good compiler flag! Let’’s use it all the time!s use it all the time!

2) 2) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 3x3][matrix size 3x3]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level degrades O3 optimization level degrades
performance by about 10%performance by about 10%

So, selecting this flag is not always good!So, selecting this flag is not always good!

Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

Room for improvement?

This problem is not new (40+ years)This problem is not new (40+ years)

(Optimizing matrix multiply code)(Optimizing matrix multiply code)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ex
ec

ut
io

n
tim

e
sp

ee
du

p

baseline

feedback directed

Lam et al.

Coleman et al.

libraries

hand-tuned

Challenges

•• Optimizer has to exploit all architectural featuresOptimizer has to exploit all architectural features

-- Instruction and thread level parallelismInstruction and thread level parallelism

-- Effective management of memory hierarchy Effective management of memory hierarchy

(registers, caches, memory, disk)(registers, caches, memory, disk)

•• Optimization at many levels: source, internal formats, assembleOptimization at many levels: source, internal formats, assemblerr

•• Optimization at many scopes: Optimization at many scopes:

(whole program, function/procedure, loop, basic block)(whole program, function/procedure, loop, basic block)

•• Which optimizations to use?Which optimizations to use?

•• What is the best order of optimizations?What is the best order of optimizations?

•• How to select right transformation parameters?How to select right transformation parameters?

•• What if transformation parameters depend on runWhat if transformation parameters depend on run--time information?time information?

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhOptimizations typically split into those that are always worthwhile and ile and
machine specificmachine specific

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhOptimizations typically split into those that are always worthwhile and ile and
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhOptimizations typically split into those that are always worthwhile and ile and
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3

However: potentially additional variable However: potentially additional variable -- pressure on register allocation!pressure on register allocation!

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

•• Rapidly evolving architectural features strongly determine the bRapidly evolving architectural features strongly determine the best code est code
sequencesequence

•• Rarely are all instructions of equal cost. Even if they have theRarely are all instructions of equal cost. Even if they have the same same
latency, not all function units support all functions.latency, not all function units support all functions.

•• The more complex the hardware, the harder it is to determine theThe more complex the hardware, the harder it is to determine the best best
code sequencecode sequence

•• Mixed multimedia instructions of different ISA for heterogeneousMixed multimedia instructions of different ISA for heterogeneous
systems systems -- which version to select?which version to select?

ChallengesChallenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Statically (at compile time) analyze the program and transform iStatically (at compile time) analyze the program and transform it based t based
on architectural features (such as ISA, memory hierarchy, etc) aon architectural features (such as ISA, memory hierarchy, etc) and nd
requirements (such as reducing execution time or program size) requirements (such as reducing execution time or program size)

Example of strideExample of stride--1 access. Array C has row1 access. Array C has row--major layout. Makes major layout. Makes
sense to traverse data rowsense to traverse data row--wise.wise.

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][ia[j][i] +] + b[ib[i];];

This code traverses the array columnThis code traverses the array column--wisewise

Does not exploit spatial locality. Can have excessive cache missDoes not exploit spatial locality. Can have excessive cache misses.es.

Challenges

Poor stridePoor stride

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][ia[j][i] +] + b[ib[i];];

•• Neighboring fetched elements not referenced until much laterNeighboring fetched elements not referenced until much later

•• Cache line probably evicted by thenCache line probably evicted by then

Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Static analysis suggests that the innermost Static analysis suggests that the innermost iteratoriterator should be in should be in
outermost subscript outermost subscript -- should be transformed!should be transformed!

•• Transform Transform -- apply code restructuring to achieve this apply code restructuring to achieve this -- loop interchangeloop interchange

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

a[j][ia[j][i] +] + b[ib[i];];

•• This code now traverses the array rowThis code now traverses the array row--wise!wise!

•• Linear analysis and transformations can bring dramatic performaLinear analysis and transformations can bring dramatic performance nce
improvementsimprovements

Challenges

Improved strideImproved stride

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

a[j][ia[j][i] +] + b[ib[i];];

•• Neighboring fetched elements referenced immediatelyNeighboring fetched elements referenced immediately

•• Cache line unlikely to be evictedCache line unlikely to be evicted

Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• However does not consider other costs. i.e. However does not consider other costs. i.e. b[ib[i] is no longer invariant] is no longer invariant --
temporal locality losttemporal locality lost

•• Uses idealized model of machine. No account of memory hierarchy,Uses idealized model of machine. No account of memory hierarchy,
cache replacement policy etc.cache replacement policy etc.

•• If any of this were to change, no way of changing the compilerIf any of this were to change, no way of changing the compiler

•• Fundamentally each analysis has a small focused scope and hardwaFundamentally each analysis has a small focused scope and hardware re
issue to reduce complexity.issue to reduce complexity.

•• No theory/practice to integrate views.No theory/practice to integrate views.

Challenges
Some other transformations: Loop UnrollingSome other transformations: Loop Unrolling

original loop:original loop: unrolled loop (u unrolled loop (u -- unroll factor):unroll factor):

do i = 1, ndo i = 1, n do i = 1, n, udo i = 1, n, u
S1(i) S1(i) S1(i)S1(i)
S2(i)S2(i) S2(i)S2(i)
…… ……

end doend do S1(i+1)S1(i+1)
S2(i+1)S2(i+1) loop body replicatedloop body replicated
…… u timesu times
S1(i+uS1(i+u--1)1)
S2(i+uS2(i+u--1)1)
……

end doend do
do j = i, ndo j = i, n

S1(j)S1(j) processing allprocessing all
S2(j)S2(j) remainingremaining
…… elementselements

end doend do

Which unrolling factor to choose?Which unrolling factor to choose?

Challenges
Some other transformations: Loop TilingSome other transformations: Loop Tiling

original loop nest:original loop nest: transformed loop nest:transformed loop nest:
do IT = 1, N, SSdo IT = 1, N, SS
do JT = 1, N, SSdo JT = 1, N, SS

do I = 1, Ndo I = 1, N do I = IT, MIN(N, IT+SSdo I = IT, MIN(N, IT+SS--1)1)
do J = 1, Ndo J = 1, N do J = JT, MIN(N, JT+SSdo J = JT, MIN(N, JT+SS--1)1)

A(I,J) = A(I,J) + B(I,J)A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J)
C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2 C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2

end doend do end doend do
end doend do end doend do

end doend do
end doend do

iteration spaceiteration space iteration spaceiteration space
of the original loop:of the original loop: of the transformed loop:of the transformed loop:

Motivation

Current stateCurrent state--ofof--thethe--art compilers and optimizers often fail to art compilers and optimizers often fail to
deliver best performance on modern systems due to deliver best performance on modern systems due to
fundamental reason of complexity and fundamental reason of complexity and undecidabilityundecidability
•• lack of runlack of run--time information time information -- impossible to know the best code sequence at impossible to know the best code sequence at
compilecompile--timetime

•• simplistic hardware models for rapidly evolving processor archisimplistic hardware models for rapidly evolving processor architecture while its tecture while its
behavior with outbehavior with out--ofof--order execution and caches is nonorder execution and caches is non--deterministicdeterministic

•• long chain of optimization passes long chain of optimization passes -- difficult to predict best order, inevitably loss difficult to predict best order, inevitably loss
of information along the pathof information along the path

•• fixed blackfixed black--box optimization heuristics and inability to finebox optimization heuristics and inability to fine--tune applicationstune applications

•• inability to reuse optimization knowledge among different progrinability to reuse optimization knowledge among different programs and ams and
architecturesarchitectures

•• inability to adapt to varying program and system behavior at ruinability to adapt to varying program and system behavior at runn--timetime

Motivation

CCurrent urrent compiler andcompiler and optimization technologies should be revisited optimization technologies should be revisited
to keep pace with rapidly evolving hardwareto keep pace with rapidly evolving hardware

Need static compilers that can continuously and automatically leNeed static compilers that can continuously and automatically learn arn
how to optimize programs, and have an ability to adapt at runhow to optimize programs, and have an ability to adapt at run--time time

for different behavior and constraintsfor different behavior and constraints

Formalization of optimization

Compilation as OptimizationCompilation as Optimization

•• Define Define ““formalformal”” optimization problem: minimize objective function over optimization problem: minimize objective function over
a space of options.a space of options.

•• Objective function is execution time, though code size, power aObjective function is execution time, though code size, power and nd
other constraints can be important.other constraints can be important.

•• Optimization search space: all possible equivalent programsOptimization search space: all possible equivalent programs

•• Objective function is Objective function is undecidableundecidable in generalin general

•• Optimization space: infiniteOptimization space: infinite

Formalization of optimization

IntractabilityIntractability

•• Solving an Solving an undecidableundecidable problem over an infinite space is clearly not problem over an infinite space is clearly not
feasible so simplification is necessaryfeasible so simplification is necessary

•• Traditionally have broken the problem into subTraditionally have broken the problem into sub--problems based on certain problems based on certain
assumptionsassumptions

•• Solve the problem by looking at each in isolation:Solve the problem by looking at each in isolation:

•• Code generationCode generation -- determining the best code for an expression is NPdetermining the best code for an expression is NP

•• SchedulingScheduling -- determining the best order of instruction is NPdetermining the best order of instruction is NP

•• Register allocationRegister allocation determining the best use of registers to minimize determining the best use of registers to minimize
memory traffic is NPmemory traffic is NP

Formalization of optimization

How to overcome?How to overcome?

Two main problems:Two main problems:

•• ComplexityComplexity of processor architecture, of processor architecture, undecidabilityundecidability of programof program

Both problems arise from trying to optimize statically at compilBoth problems arise from trying to optimize statically at compile timee time

•• Have to Have to guess a tractable modelguess a tractable model, have to , have to guess about data inputguess about data input

•• Pros and Cons to all approaches. Depends highly on application Pros and Cons to all approaches. Depends highly on application
scenarioscenario

Formalization of optimization

Taxonomy:Taxonomy:

2 main causes: program 2 main causes: program undecidabilityundecidability and processor complexityand processor complexity

•• Variables (what): Program (P), Data (D) and Processor (proc)Variables (what): Program (P), Data (D) and Processor (proc)

•• Variables (when): design, compile or runtimeVariables (when): design, compile or runtime

•• 2 sides of adaption: portability and specialization2 sides of adaption: portability and specialization

•• Examine all techniques in this lightExamine all techniques in this light

Formalization of optimization

Taxonomy:Taxonomy:

•• Program (P), Data (D) and Processor (proc)Program (P), Data (D) and Processor (proc)

•• time = time = f(T(P),D,procf(T(P),D,proc), Pick Transformation T to minimize f), Pick Transformation T to minimize f

•• Standard compilation (SC) typically has a hardwired model of prStandard compilation (SC) typically has a hardwired model of proc oc
built inbuilt in

•• SC also has an ad hoc view of typical programs (often biased bySC also has an ad hoc view of typical programs (often biased by
SPEC!) with a SPEC!) with a compiler strategy compiler strategy that is biased to themthat is biased to them

•• SC applies the strategy at compile time making no reference to dSC applies the strategy at compile time making no reference to dataata

•• Data in no way affects SC behavior Data in no way affects SC behavior -- just guess a just guess a ““typicaltypical”” input setinput set

Formalization of optimization
Taxonomy:Taxonomy:

Design time:Design time:

•• Build a compiler: encode compiler optimization strategy. TypicaBuild a compiler: encode compiler optimization strategy. Typically a time lly a time
consuming manual process. Takes many personconsuming manual process. Takes many person--years. Particular to one years. Particular to one
processor, data and programs unknownprocessor, data and programs unknown

Compile time:Compile time:

•• Examine program and apply transformations based on design time Examine program and apply transformations based on design time
encoded strategy. Can take a reasonable amount of time. Must be encoded strategy. Can take a reasonable amount of time. Must be less than less than
accumulated runtime throughout lifetime of programaccumulated runtime throughout lifetime of program

•• Processor assumed, program known, data unknownProcessor assumed, program known, data unknown

RunRun--time:time:

•• Most knowledge about application available: processor, program Most knowledge about application available: processor, program and dataand data

•• Least amount of time available to do anything about it!Least amount of time available to do anything about it!

•• Typically compilers do nothing Typically compilers do nothing -- leave to independent runtime system/OSleave to independent runtime system/OS

Formalization of optimization

Taxonomy: Adaptation = Portability + SpecializationTaxonomy: Adaptation = Portability + Specialization

Compiler technology not normally discussed in this manner.

Appears an infrastructure rather than optimization issue.

Portability:

• Ability to MODIFY behavior to changing circumstances, changing data,
program, processor

Specialization:

• Ability to EXPLOIT fixed, known features: processor, program and data

Natural tension between the two: flexibility vs rigidity

Formalization of optimization

Taxonomy: current static compilersTaxonomy: current static compilers

• What and when to port/specialize:
processor, program, data, design, compile, runtime

• Currently: specialize to processor at design time
BUT cannot easily port to a new processor

• Portable across a wide range of programs and data
at compile and runtime BUT

• Do not specialize to runtime data or program/processor interaction

• Very little exploitation of dynamic runtime knowledge/
Adaption to changing processor or data not considered

Formalization of optimization

What are the ways to solve this problems?What are the ways to solve this problems?

Feedback directed compilation

•• Profile feedback directed compilationProfile feedback directed compilation

•• Application tuningApplication tuning

•• Iterative compilationIterative compilation

•• Efficient searchingEfficient searching

•• ConclusionConclusion

Feedback directed compilation

Feedback directed (profile directed compilation)Feedback directed (profile directed compilation)

•• Directly addresses problem of compile time unknown data Directly addresses problem of compile time unknown data

•• Key (simple) idea: run program once and collect some useful infKey (simple) idea: run program once and collect some useful information ormation

•• Use this runtime information to improve program performance Use this runtime information to improve program performance

•• In effect move the first runtime info into the compile time phaIn effect move the first runtime info into the compile time phase se

•• Makes sense if gathering the profile data is cheap and user wilMakes sense if gathering the profile data is cheap and user willing to pay ling to pay
for 2 compiles. Can still use after first compile. for 2 compiles. Can still use after first compile.

•• Allows specialization to runAllows specialization to run--time data time data –– what are pros and cons? what are pros and cons?

Feedback directed compilation

OffOff--line line vsvs onon--line compilationline compilation

•• Profile directed compilation is one example of offProfile directed compilation is one example of off--line optimization line optimization

•• Information is gathered and utilized before the Information is gathered and utilized before the ““productionproduction”” run run

•• OnOn--line schemes gather information and dynamically change program line schemes gather information and dynamically change program
as it runs. as it runs.

•• OffOff--line schemes work on basis that costs incurred at compileline schemes work on basis that costs incurred at compile--time are time are
outweighed by improved runtime. Can be more aggressive than onoutweighed by improved runtime. Can be more aggressive than on--line line
schemes. schemes.

Feedback directed compilation

Traditional compilation modelTraditional compilation model

Program Compiler Executable

Multiple data

Results

Feedback directed compilation

Profile information as an additional outputProfile information as an additional output

Data can change from run to run. Executable is still correct.Data can change from run to run. Executable is still correct.

Program Compiler Executable Profile Compiler Executable

Data0

Results0

Data1

Results1

Feedback directed compilation

Brief historyBrief history

•• The use of profiling to aid program performance has been around The use of profiling to aid program performance has been around for a for a
whilewhile

•• profprof, , gprofgprof (1982). A tool to help developers to understand their code. (1982). A tool to help developers to understand their code.
Instrumentation at compile time and then sampled at runtimeInstrumentation at compile time and then sampled at runtime

•• Hardware analysis (1980s). Monitor program behavior and adapt. Hardware analysis (1980s). Monitor program behavior and adapt.
Branch prediction Branch prediction -- pipelines means need to guess which branch to takepipelines means need to guess which branch to take

•• Edge/node based profile information for compilers 1990s Edge/node based profile information for compilers 1990s

•• Path based profiling Path based profiling LarusLarus + Ball late 1990s, Smith 2000 + Ball late 1990s, Smith 2000

Feedback directed compilation

PDC for classic optimizationPDC for classic optimization

•• Record frequently taken edges of program controlRecord frequently taken edges of program control--flow graph flow graph

•• IMPACT compiler in 1990s good example of this but also used earIMPACT compiler in 1990s good example of this but also used earlier lier --
Josh Fisher et al, Josh Fisher et al, MultiflowMultiflow. .

•• Use weight information of edges and paths in graph to restructuUse weight information of edges and paths in graph to restructure re
controlcontrol--flow graph to enable greater optimization flow graph to enable greater optimization

•• Main idea: merge frequently executed basic blocks increasing siMain idea: merge frequently executed basic blocks increasing sizes of zes of
basic block if possible (superblock/basic block if possible (superblock/hyperblockhyperblock) formation. Fix up rest of) formation. Fix up rest of
code. code.

•• Allows improved scheduling of instructions and more aggressive Allows improved scheduling of instructions and more aggressive scalar scalar
optimizations at expense of code size optimizations at expense of code size

Feedback directed compilation

PDC example 1PDC example 1

•• Sequence of basic blocks Sequence of basic blocks

•• Frequency of execution on Frequency of execution on
edges and nodes edges and nodes

•• Primarily ABEF Primarily ABEF

•• Other entry/exit controlOther entry/exit control--flow flow
prevents merging prevents merging

•• SuperSuper--block block --frequently frequently
executed path executed path

•• Merge and tidyMerge and tidy--up up

•• Optimize larger unit Optimize larger unit

Feedback directed compilation

PDC example 1PDC example 1

•• Selecting the trace Selecting the trace

•• Start at most frequent blockStart at most frequent block

•• Add blocks on most frequent Add blocks on most frequent
successors successors

•• Repeat on other nodes Repeat on other nodes

•• Done in both controlDone in both control--flow flow
directions directions

•• Do on remaining nodesDo on remaining nodes

Feedback directed compilation

PDC example 1PDC example 1

•• Tail Duplication Tail Duplication

•• Duplicate first block with Duplicate first block with
external entry edges external entry edges

•• But not the head But not the head

•• Redirect incoming edgesRedirect incoming edges

•• Duplicate outgoing Duplicate outgoing

•• Repeat Repeat

•• Much code duplication Much code duplication

Feedback directed compilation

PDC example 2PDC example 2

Common b + c on frequently taken pathCommon b + c on frequently taken path

Feedback directed compilation

PDC example 2PDC example 2

Replicate first node on main path with external incoming edge Replicate first node on main path with external incoming edge

Now separate pathsNow separate paths

Feedback directed compilation

PDC example 2PDC example 2

Applying CSE eliminates redundant computation at cost of additioApplying CSE eliminates redundant computation at cost of additional codenal code

Feedback directed compilation

Edge Edge vsvs Path profilingPath profiling

•• Overlapping paths cannot be distinguished by edge profiling Overlapping paths cannot be distinguished by edge profiling

•• Path profiling allows much greater accuracy Path profiling allows much greater accuracy

•• However, combinatorial explosion in paths. Cycles in graphs leadHowever, combinatorial explosion in paths. Cycles in graphs leads to s to
potentially unbounded number potentially unbounded number

•• In practice Edge/node profiling only captures around 40In practice Edge/node profiling only captures around 40--50 50

•• LarusLarus and Ball and Ball ’’99 developed an efficient path profiler that avoids these 99 developed an efficient path profiler that avoids these
problems. In practice the benefit achieved was small though problems. In practice the benefit achieved was small though

•• Mike Smith at Harvard extended this idea for more targeted optimMike Smith at Harvard extended this idea for more targeted optimization ization

Feedback directed compilation

Some results when using PDC (FursinSome results when using PDC (Fursin’’2002)2002)

SPEC CPU95SPEC CPU95
Alpha compiler (21264)Alpha compiler (21264)

-30

-20

-10

0

10

20

30

40
m

at
m

ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d ap
si

w
av

e5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

-O3 vs -O2 -O3 with PDC vs -O2

Feedback directed compilation

Some results when using PDC (FursinSome results when using PDC (Fursin’’2002)2002)

SPEC CPU95SPEC CPU95
Intel Compiler (Pentium III) Intel Compiler (Pentium III) –– poor improvementpoor improvement

Extremely well studied benchmarksExtremely well studied benchmarks

-3

-2

-1

0

1

2

3

4
m

at
m

ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d ap
si

w
av

e5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

-O3 vs -O2 -O3 with PDC vs -O2

Feedback directed compilation

Beyond PDCBeyond PDC

•• Although useful, the performance gains are modest Although useful, the performance gains are modest

•• Challenge of Challenge of undecidabilityundecidability and processor behavior not addressed. and processor behavior not addressed.

•• What happens if data changes on the second run? What happens if data changes on the second run?

•• Really focuses on persistent controlReally focuses on persistent control--flow behavior flow behavior

•• All other information i.e. runAll other information i.e. run--time values, memory locations accessed are time values, memory locations accessed are
ignoredignored

•• Can we get more out of knowing data and its impact on program Can we get more out of knowing data and its impact on program
behavior?behavior?

Evolution of PDC

Feedback directed compilation

PDC with multiple (iterative) compilesPDC with multiple (iterative) compiles

Program Compiler Executable Profiles

Multiple data

Results

Feedback directed compilation

Automatic library tuningAutomatic library tuning

•• A different offA different off--line approach that exploits knowledge gained by running line approach that exploits knowledge gained by running
the program in the optimization process the program in the optimization process

•• There is a (growing) family of application specific approaches tThere is a (growing) family of application specific approaches to library o library
tuningtuning

•• Rather than recording path information for later optimization Rather than recording path information for later optimization –– just record just record
execution time execution time

•• Try many different versions of the program and select the best fTry many different versions of the program and select the best for that or that
machine. Key issue is how different programs are generated. machine. Key issue is how different programs are generated.

•• In effect move runIn effect move run--time into design time. time into design time.

Main examples Main examples ATLAS, ATLAS, PHiPACPHiPAC and FFTWand FFTW

Feedback directed compilation

ATLASATLAS

•• An automatic method of tuning linear algebraic libraries for difAn automatic method of tuning linear algebraic libraries for differing fering
processorsprocessors

•• It is domain specific and only focuses on tuning the core GEMM rIt is domain specific and only focuses on tuning the core GEMM routine outine
for a specific processor. for a specific processor.

•• Takes an adTakes an ad--hoc approach hoc approach -- generate different versions and measure generate different versions and measure
them against anything available them against anything available -- including vendor supplied libraries and including vendor supplied libraries and
pick the best pick the best

•• It tries different software pipelining and register tiling paramIt tries different software pipelining and register tiling parameters and eters and
enumerates them all, selecting the best. The space of options isenumerates them all, selecting the best. The space of options is derived derived
from explicit knowledge of the application behavior. from explicit knowledge of the application behavior.

Feedback directed compilation

ATLAS

Broken down into application specific, generic and platform specific sections

Feedback directed compilation

ATLAS

• Regularly outperforms the best existing approaches. Now the standard
approach to library generation.

• Adaption?: Very portable - works on any platform AND specializes to the
particular processor

• BUT specialized to a particular application -no portability across
programs no exploitation of runtime data as static control-flow

• PHiPAC tries to exploit data patterns in sparse structures by trying
simple optimizations off-line and applying them at run-time when data
encountered.

• However - domain specific, not generalizable or widely automatable

Feedback directed compilation

Iterative compilationIterative compilation

•• Iterative compilation started in 1997 with the OCEANS project Iterative compilation started in 1997 with the OCEANS project

•• Similar in spirit to automatic tuning except the space of tuningSimilar in spirit to automatic tuning except the space of tuning is in fact is in fact
the entire program transformation space the entire program transformation space

•• In a sense it is direct implementation of the formal compiler opIn a sense it is direct implementation of the formal compiler optimization timization
problem. Find transformation T that minimizes cost. problem. Find transformation T that minimizes cost.

•• Main ideas was to combine high and low level optimization and usMain ideas was to combine high and low level optimization and use cost e cost
models to guide selection models to guide selection

•• Highly ambitious but immature infrastructure prevented much progHighly ambitious but immature infrastructure prevented much progress ress

Feedback directed compilation

OCEANS

• Similar iterative structure to ATLAS

• Main work on searching for best tile
and unroll parameters PFDC’98

Feedback directed compilation

matrix multiply, N=400, UltraSparc, exhaustive search

Minimum at: Unroll=3, Tile size=57

Near minimum: 2.6%, original 4.99 sec, minimum 0.56 sec

Feedback directed compilation

matrix multiply, N=400, UltraSparc, random search

50 steps: within 0.0%. Initially 2.65 times slower than minimum

Feedback directed compilation

matrix multiply, N=512, Alpha, exhaustive search

Minimum at: Unroll=4, Tile size=85

Near minimum: 0.9%, original 31.72 sec, minimum 3.34 sec,
maximum 81.40 !

Feedback directed compilation

matrix multiply, N=512, Alpha, random search

50 steps: within 21.9%. Originally 5.25 times slower than minimum

Feedback directed compilation

matrix multiply, N=400, Pentium Pro, exhaustive search

Minimum at: Unroll=19, Tile size=57

Near minimum: 4.3%, original 4.88 sec, minimum 1.43 sec

Feedback directed compilation

matrix multiply, N=400, Pentium Pro, random search

50 steps: within 10.5%

Feedback directed compilation

matrix multiply, N=512, R10000, exhaustive search

Minimum at: Unroll=4, Tile size=85

Near minimum: 7.2%, original 2.79 sec, minimum 1.09 sec

Feedback directed compilation

matrix multiply, N=512, R10000, random search

50 steps: within 4.9%

Feedback directed compilation

Phase orderPhase order

•• Oceans work looked at parameterized high level search spaces (tiOceans work looked at parameterized high level search spaces (tiling, ling,
unrolling). Restricted by compilers and only small kernel explorunrolling). Restricted by compilers and only small kernel exploration ation

•• Impressive search results due to Impressive search results due to ““tunedtuned”” heuristic and small spaces. In heuristic and small spaces. In
practice depends on space shape practice depends on space shape

•• Keith Cooper et al Keith Cooper et al ’’99 onwards also looked at iterative compilation 99 onwards also looked at iterative compilation

•• CooperCooper’’s search space was the orderings of phases within a compiler s search space was the orderings of phases within a compiler

•• Lower level and not tied to any language. More generic and exploLower level and not tied to any language. More generic and explores the res the
ageage--old phase ordering problem more directly old phase ordering problem more directly

Feedback directed compilation

•• Cooper has found improvements up to 25% over default sequencesCooper has found improvements up to 25% over default sequences

•• Examined search heuristics that find good points quicklyExamined search heuristics that find good points quickly

•• However, evaluation approach is strange and results donHowever, evaluation approach is strange and results don’’t seem t seem
portableportable

Feedback directed compilation

DSP systemsDSP systems

•• Iterative compilation proved to be useful for embedded applicatiIterative compilation proved to be useful for embedded applications or ons or
libraries.libraries.

•• It is difficult to improve on embedded compilers and hard to getIt is difficult to improve on embedded compilers and hard to get access access
to internals. HLT is attractive but pointers cause problems to internals. HLT is attractive but pointers cause problems

•• Franke et al 2005 overcomes this with a pointer recovery + SUIF Franke et al 2005 overcomes this with a pointer recovery + SUIF based based
transformation explorer. Uses 2 search strategies transformation explorer. Uses 2 search strategies

Feedback directed compilation

DSP framework

Using this framework to exhaustively explore and characterize thUsing this framework to exhaustively explore and characterize the e
optimization spaceoptimization space

Feedback directed compilation

Franke et alFranke et al

•• Looks through space of 80Looks through space of 808080 transformations on 3 platforms for UTDSP transformations on 3 platforms for UTDSP
benchmark suite. Not feasible to do exhaustively. Really stressebenchmark suite. Not feasible to do exhaustively. Really stresses SUIF s SUIF

•• 2 algorithms. Trade2 algorithms. Trade--off between coverage and focus. Random search off between coverage and focus. Random search --
select a random length up to 80. Then randomly select any select a random length up to 80. Then randomly select any
transformation for each location. Lots of redundant transformatitransformation for each location. Lots of redundant transformations. ons.

•• PBIL: Population based inference learning. Modify probability ofPBIL: Population based inference learning. Modify probability of
selecting transformation based on previous trials. Only examine selecting transformation based on previous trials. Only examine effective effective
transformations transformations

•• Average 41% reduction. PBIL finds the best in majority of cases Average 41% reduction. PBIL finds the best in majority of cases but but
Random best has higher speed up. Random best has higher speed up.

Feedback directed compilation

Impact of transformationsImpact of transformations

Feedback directed compilation

Results

• Tried 500 runs. On UTDSP benchmark: TriMedia average speedup of
1.43 and 1.73 for TigerSharc

• Shows that HLT can give a big win compared to backend optimizations

• Also compared GCC and ICC on embedded Celeron

• Original: ICC 1.22 faster than GCC

• GCC + IC: speedup of 1.54 - better than ICC

• BUT ICC + IC: speedup of 2.14

Feedback directed compilation
Interactive Compilation Interface (Fursin et alInteractive Compilation Interface (Fursin et al’’2005)2005)

Instead of developing new compiler or transformations tools, moInstead of developing new compiler or transformations tools, modify current dify current
popular (nonpopular (non--research) rigid compilers into simpler transparent open transforresearch) rigid compilers into simpler transparent open transformation mation
toolsets with externally toolsets with externally tunabletunable optimization heuristics through a standardized optimization heuristics through a standardized
Interactive Compilation Interface (ICI)Interactive Compilation Interface (ICI)

Control only decision process at global or local level and avoiControl only decision process at global or local level and avoid revealing all d revealing all
intermediate compiler representation to allow further transparenintermediate compiler representation to allow further transparent compiler evolutiont compiler evolution

Narrow down optimization space by suggesting only legal transfoNarrow down optimization space by suggesting only legal transformationsrmations

Enable iterative recompilation algorithm to apply sequences of Enable iterative recompilation algorithm to apply sequences of transformationstransformations

Treat current optimization heuristic as a blackTreat current optimization heuristic as a black--box and progressively adapt it to a box and progressively adapt it to a
given program and given architecturegiven program and given architecture

Allow lifeAllow life--long, wholelong, whole--program optimization research with optimization knowledge program optimization research with optimization knowledge
reusereuse

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation Interface

ApplicationApplication

BinaryBinary

SourceSource--toto--sourcesource
transformerstransformers

BinaryBinary--toto--binarybinary
transformerstransformers

Decision for Perform Decision for Perform
transformation transformation 11 transftransf 11

SubSub--heuristic heuristic ii

SubSub--heuristic heuristic 11

SubSub--heuristic heuristic jj

SubSub--heuristic heuristic 22

SubSub--heuristic heuristic kk

Compiler optimization Compiler optimization
heuristicheuristic

Decision for Perform Decision for Perform
transformation transformation ii transftransf ii

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation Interface

ICIICI11
PerformPerform
transf. transf. 11

Decision for Decision for
transformation transformation 11

ICIICI22
PerformPerform
transf. transf. 22

Decision for Decision for
transformation transformation 22

ICIICIii
PerformPerform
transf. transf. ii

Decision for Decision for
transformation transformation ii

Rigid compiler Rigid compiler
optimization heuristicoptimization heuristic

““black boxblack box””

ProgramProgram
OptimizationOptimization

DatabaseDatabase
BinaryBinary

ExternalExternal
compilercompiler
driversdrivers

Iterative Interactive Iterative Interactive
CompilerCompiler

ApplicationApplication

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation Interface

moves toward simpler modular compilermoves toward simpler modular compiler

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation Interface

int get_interface_version (void);int get_interface_version (void);

void clean_scope (void);void clean_scope (void);

bool scope_to_function (char *func_name);bool scope_to_function (char *func_name);

bool scope_to_loop (int loop);bool scope_to_loop (int loop);

void *get_feature (char *feature_name);void *get_feature (char *feature_name);

char **get_available_features_for_type (int type);char **get_available_features_for_type (int type);

bool run_pass (char *pass_name)bool run_pass (char *pass_name);;

bool unroll_loop(int factor,bool unroll_loop(int factor, enum UNROLL_TYPE type);enum UNROLL_TYPE type);

bool loop_interchange (int loop_number);bool loop_interchange (int loop_number);

bool loop_fusion (int nr_of_consecutive_loops);bool loop_fusion (int nr_of_consecutive_loops);

bool function_inline (int call_id);bool function_inline (int call_id);

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation Interface

#include "ic#include "ic--controller.h"controller.h"
#include "ic#include "ic--interface.h"interface.h"
bool start (char *params)bool start (char *params)
{{
int *version = get_interface_version ();int *version = get_interface_version ();
bool ret = (*version > 100) ? true : false;bool ret = (*version > 100) ? true : false;
free(version);free(version);
return ret;return ret;

}}
void stop (void)void stop (void)
{{
/* nothing to be done; *//* nothing to be done; */

}}
void controller (void)void controller (void)
{{
char **passes = get_feature ("global_passes");char **passes = get_feature ("global_passes");
char **functions = get_feature ("functions");char **functions = get_feature ("functions");
char **tmp, **tmp1;char **tmp, **tmp1;
// IPA passes// IPA passes
for (tmp = passes; *tmp != NULL; tmp++)for (tmp = passes; *tmp != NULL; tmp++)
{{
char *pass_name = *tmp;char *pass_name = *tmp;
// run_pass should never return false, since we are performing s// run_pass should never return false, since we are performing same passame pass
// order as GCC.// order as GCC.
run_pass(pass_name);run_pass(pass_name);
free(pass_name);free(pass_name);
}}

Feedback directed compilation
Interactive Continuous CompilationInteractive Continuous Compilation

applicationapplication

binarybinary

sourcesource--toto--source source
transformationstransformations

current compilerscurrent compilers

executionexecution

binarybinary--toto--binary binary
transformationstransformations

Feedback directed compilation
Interactive Continuous CompilationInteractive Continuous Compilation

applicationapplication

binarybinary

sourcesource--toto--source source
transformationstransformations

Iterative Interactive Iterative Interactive
CompilerCompiler

executionexecution

binarybinary--toto--binary binary
transformationstransformations

Program Program
Transformation Transformation

DatabaseDatabase

Iterative Optimizations/Iterative Optimizations/
Machine LearningMachine Learning

Development Websites:Development Websites:

http://gcchttp://gcc--ici.sourceforge.netici.sourceforge.net

http://pathscalehttp://pathscale--
ici.sourceforge.netici.sourceforge.net

http://open64http://open64--ici.sourceforge.netici.sourceforge.net

http://gcchttp://gcc--ccc.sourceforge.netccc.sourceforge.net

Feedback directed compilation

Evaluating iterative compilation with multiple datasetsEvaluating iterative compilation with multiple datasets

MiDataSets for MiDataSets for MiBenchMiBench –– 20 per program20 per program

Iterative search for best compiler flags using Iterative search for best compiler flags using PathScalePathScale compiler suitecompiler suite

Grigori Fursin, John Cavazos, Michael OGrigori Fursin, John Cavazos, Michael O’’Boyle and Olivier Temam. MiDataSets: Creating Boyle and Olivier Temam. MiDataSets: Creating
The Conditions For A More Realistic Evaluation of Iterative OptiThe Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of mization. Proceedings of
the the International Conference on High Performance Embedded ArchitectuInternational Conference on High Performance Embedded Architectures & Compilers res & Compilers
(HiPEAC 2007), Ghent, Belgium, January 2007(HiPEAC 2007), Ghent, Belgium, January 2007

Development website:Development website: http://http://midatasets.sourceforge.netmidatasets.sourceforge.net

Feedback directed compilation

Data sets reactions to optimizations (Data sets reactions to optimizations (dijkstradijkstra).).

Feedback directed compilation

Data sets reactions to optimizations (jpeg decode).Data sets reactions to optimizations (jpeg decode).

Feedback directed compilation

Variation of best optimizations across programs (SHA)Variation of best optimizations across programs (SHA)

Feedback directed compilation

Variation of best optimizations across programs (SUSAN Corners)Variation of best optimizations across programs (SUSAN Corners)

Feedback directed compilation

Search speedSearch speed

•• The main problem is optimization space size and speed to solutioThe main problem is optimization space size and speed to solution n

•• Many use a cut down transformation space Many use a cut down transformation space -- but this just imposes ad but this just imposes ad
hoc non portable bias hoc non portable bias

•• Need to have large interesting transformation space. Orthogonal Need to have large interesting transformation space. Orthogonal -- no no
repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 vrepetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very ery
systematic but doesnsystematic but doesn’’t cover everything t cover everything

•• Build search techniques to find good points quickly Build search techniques to find good points quickly

Feedback directed compilation

Using modelsUsing models

•• Obvious approach is to use cheap static modes to help reduce numObvious approach is to use cheap static modes to help reduce number ber
of runsof runs

•• Difficulty is to balance savings gained by model against hardwirDifficulty is to balance savings gained by model against hardwiring ing
strategy strategy

•• Wolfe and Wolfe and MayadanMayadan generate many versions of a program and check generate many versions of a program and check
against an internal cache models rather than generate the best bagainst an internal cache models rather than generate the best by y
construction construction

•• Although more successful doesnAlthough more successful doesn’’t address problem of processor t address problem of processor
complexity. No real feedback (Pugh A* search). Cannot adapt complexity. No real feedback (Pugh A* search). Cannot adapt

•• Knijnenburg et al PACT 2000 use simple cache models as filters. Knijnenburg et al PACT 2000 use simple cache models as filters. Used Used
to eliminate bad options rather than as substitute for feedback.to eliminate bad options rather than as substitute for feedback. Obtained Obtained
significant speed up significant speed up

Feedback directed compilation

Search spaceSearch space

•• Understanding the shape or structure of search space is vital toUnderstanding the shape or structure of search space is vital to
determining good ways to search it determining good ways to search it

•• Unfortunately little agreementUnfortunately little agreement

•• VuducVuduc ’’99 shows that minima dramatically vary across processor99 shows that minima dramatically vary across processor

•• Cooper shows that reasonable minima are very near any given poinCooper shows that reasonable minima are very near any given pointt

•• However, our recent work shows that it strongly depends on scenaHowever, our recent work shows that it strongly depends on scenario. rio.
Rich space on a Rich space on a TriMediaTriMedia while golf green on the TI. Should use while golf green on the TI. Should use
structure to aid search structure to aid search

•• VuducVuduc uses distribution of good points as stopping criteriauses distribution of good points as stopping criteria

•• Fursin use upper bound of performance as guide. Fursin use upper bound of performance as guide.

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 1052

Feedback directed compilation

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (OHigh potential (O’’Boyle, Cooper), but:Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large,) are large,
nonnon--linear with many local minimalinear with many local minima

Solving these problems is nonSolving these problems is non--trivialtrivial

Feedback directed compilation

Next will focus on Next will focus on

dynamic compilation/optimization approaches to dynamic compilation/optimization approaches to
adapt to different programs behavior at runadapt to different programs behavior at run--time time

and machine learning to speed up iterative and machine learning to speed up iterative
searchsearch……

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 1052

Reminder

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large,) are large,
nonnon--linear with many local minimalinear with many local minima

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 1052

Reminder

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (OHigh potential (O’’Boyle, Cooper), but:Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large,) are large,
nonnon--linear with many local minimalinear with many local minima

Finding a good solution may be Finding a good solution may be
long and nonlong and non--trivialtrivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 1052

Reminder

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (OHigh potential (O’’Boyle, Cooper), but:Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large,) are large,
nonnon--linear with many local minimalinear with many local minima

Solving these problems is nonSolving these problems is non--trivialtrivial

Dynamic techniques

•• All today's techniques focus on delaying some or all of the optAll today's techniques focus on delaying some or all of the optimizations to imizations to
runtimeruntime

•• This has the benefit of knowing the exact runtime controlThis has the benefit of knowing the exact runtime control--flow, hotspots, flow, hotspots,
data values, memory locations and hence complete program knowleddata values, memory locations and hence complete program knowledgege

•• It thus largely eliminates many of the It thus largely eliminates many of the undecidableundecidable issues of compileissues of compile--time time
optimization by delaying until runtimeoptimization by delaying until runtime

•• However, the cost of analysis/optimization is now crucial as it However, the cost of analysis/optimization is now crucial as it forms a forms a
runtime overhead. All techniques characterized by trying to explruntime overhead. All techniques characterized by trying to exploit runtime oit runtime
knowledge with minimal costknowledge with minimal cost

Background

•• Delaying compiler operations until runtime has been used for maDelaying compiler operations until runtime has been used for many yearsny years

•• Interpreters translates and execute at runtimeInterpreters translates and execute at runtime

•• Languages developed in the 60s Languages developed in the 60s ieie AlgolAlgol 68 allowed dynamic memory 68 allowed dynamic memory
allocation relying on language specific runtime system to mange allocation relying on language specific runtime system to mange memorymemory

•• Lisp more fundamentally has runtime type checking of objectsLisp more fundamentally has runtime type checking of objects

•• Smalltalk in the 80s deferred compilation to runtime to reduce tSmalltalk in the 80s deferred compilation to runtime to reduce the amount he amount
of compilation otherwise required in the 00 settingof compilation otherwise required in the 00 setting

•• Java applications are compiled into Java applications are compiled into bytecodebytecode and to run on Java Virtual and to run on Java Virtual
Machines (JVM) thus making them portable across architecturesMachines (JVM) thus making them portable across architectures

•• .NET applications (mainly for Windows) similarly execute in a r.NET applications (mainly for Windows) similarly execute in a runun--time time
environment called Common Language Environment (CLR)environment called Common Language Environment (CLR)

Runtime specialization

•• For many, runtime optimization is For many, runtime optimization is ““adaptive optimizationadaptive optimization””

•• Although wide range of techniques, all are based around runtimeAlthough wide range of techniques, all are based around runtime
specializationspecialization

•• Constant propagation is a simple exampleConstant propagation is a simple example

•• Specializing an interpreter with respect to a program gives a cSpecializing an interpreter with respect to a program gives a compilerompiler

•• Can we specialize at runtime to gain benefit with minimal overhCan we specialize at runtime to gain benefit with minimal overhead? ead?
Statically inserted selection codeStatically inserted selection code vsvs parameterized codeparameterized code vsvs runtime runtime
generationgeneration

Different techniques

Static code selection Parameterized Static code selection Parameterized Code generationCode generation

DyC

•• One of the best known dynamic program specializations techniqueOne of the best known dynamic program specializations techniques based s based
on dynamic code generationon dynamic code generation

•• The user annotates the program defining where there may be opporThe user annotates the program defining where there may be opportunities tunities
for runtime specialization. Marks variables and memory locationsfor runtime specialization. Marks variables and memory locations that are that are
static within a particular scopestatic within a particular scope

•• The system generates code that checks the annotated values at ruThe system generates code that checks the annotated values at runtime ntime
and regenerates code on the flyand regenerates code on the fly

•• By using annotation, the system avoids overBy using annotation, the system avoids over--checking and hence runtime checking and hence runtime
overhead. However, this is at the cost of additional user overheoverhead. However, this is at the cost of additional user overheadad

DyC

Binding analysis
examines all uses of
static variables within
scope

Dynamic compiler
exploits invariance and
specializes the code
when invoked

DyC results

•• Asymptotic speedup and a range programs varies from 1.05 to 4.6Asymptotic speedup and a range programs varies from 1.05 to 4.6

•• Strongly depends on percentage of time spent in the dynamically Strongly depends on percentage of time spent in the dynamically compiled compiled
region. Varies from 9.9 to 100%region. Varies from 9.9 to 100%

•• Low overhead from 13 cycles to 823 cycles per instruction generaLow overhead from 13 cycles to 823 cycles per instruction generatedted

•• However relies on user intervention which However relies on user intervention which may not be realisticmay not be realistic in large in large
applicationsapplications

•• Relies on user Relies on user correctly annotatingcorrectly annotating the codethe code

Calpa for DyC

•• CalpaCalpa is a system aimed at automatically identifying opportunities fois a system aimed at automatically identifying opportunities for r
specialization without user interventionspecialization without user intervention

•• It analyses the program for potential opportunities and determinIt analyses the program for potential opportunities and determines the es the
possible cost possible cost vsvs the potential benefitthe potential benefit

•• For example if a variable is multiplied by another variable whicFor example if a variable is multiplied by another variable which is known to h is known to
be constant in a particular scope, then if this is equal to 0 orbe constant in a particular scope, then if this is equal to 0 or 1 then cheaper 1 then cheaper
code maybe generatedcode maybe generated

•• If this is inside a deep loop then a quick test for 0 or 1 outsiIf this is inside a deep loop then a quick test for 0 or 1 outside the loop will de the loop will
be profitable be profitable

Calpa for DyC

•• CalpaCalpa is a frontis a front--end end
to to DyCDyC

•• It uses It uses
instrumentation to instrumentation to
guide annotation guide annotation
insertioninsertion

C programC program

CalpaCalpa
instrumentationinstrumentation

CalpaCalpa
annotationannotation

instrumented instrumented
C programC program

annotated annotated
C programC program

DyCDyC
compilercompiler

compiled compiled
C programC program

dynamic dynamic
compilercompiler

value value
profileprofile

sample sample
inputinput

Calpa for DyC

•• Instruments code and sees how often variables change value. GiveInstruments code and sees how often variables change value. Given this n this
data determined the cost and benefit for a region of codedata determined the cost and benefit for a region of code

•• Number of different variants, cost of generating code, cache looNumber of different variants, cost of generating code, cache lookup. Main kup. Main
benefit determined by estimating new critical pathbenefit determined by estimating new critical path

•• Explores all specialization up to a threshold. Widely different Explores all specialization up to a threshold. Widely different overheads 2 overheads 2
seconds to 8 hours. In two cases improves seconds to 8 hours. In two cases improves -- from 6.6% to 22.6%from 6.6% to 22.6%

•• CalpaCalpa and and DyCDyC utilize selective dynamic code generation. Now look at fully utilize selective dynamic code generation. Now look at fully
dynamic schemesdynamic schemes

Dynamic binary translation

•• The key idea is to take one ISA binary and translate it into anThe key idea is to take one ISA binary and translate it into another ISA other ISA
binary at runtime.binary at runtime.

•• In fact this happens inside Intel processors where x86 is unpackIn fact this happens inside Intel processors where x86 is unpacked and ed and
translated into an internal RISC translated into an internal RISC opcodeopcode which is then scheduled. The which is then scheduled. The
TransMetaTransMeta Crusoe processor does the same. Same with IBM legacy Crusoe processor does the same. Same with IBM legacy ISAsISAs..

•• Why don't we do this statically? Many reasons!Why don't we do this statically? Many reasons!

•• The source ISA is legacy but the processor internal ISA changes.The source ISA is legacy but the processor internal ISA changes. It is It is
impossible to determine statically what is the program. It is noimpossible to determine statically what is the program. It is not legal to store t legal to store
a translation. It can be applied to a local ISA for long term opa translation. It can be applied to a local ISA for long term optimizationtimization

DAISY

•• One of the best known schemes came out of IBM headed by One of the best known schemes came out of IBM headed by KemalKemal
EbciogluEbcioglu

•• Aimed at translating PowerPC binaries to the IBM VLIW machineAimed at translating PowerPC binaries to the IBM VLIW machine

•• Idea was to have a simple powerful inIdea was to have a simple powerful in--order machine with a software layer order machine with a software layer
handling complexities of PowerPC ISAhandling complexities of PowerPC ISA

•• Dynamic translation opens up opportunities for dynamic optimizatDynamic translation opens up opportunities for dynamic optimization.ion.

•• Concerned for industrial strength usage. Exceptions, selfConcerned for industrial strength usage. Exceptions, self--modifying code modifying code
etcetc……

DAISY

•• At runtime, program path and data known. But need a low overheadAt runtime, program path and data known. But need a low overhead
scheme to make worthwhilescheme to make worthwhile

•• Specialization happens naturally as we know runtime value of varSpecialization happens naturally as we know runtime value of variablesiables

•• Can bias code generation to check for profitable casesCan bias code generation to check for profitable cases

•• DAISY uses a code cache of recently translated code segmentDAISY uses a code cache of recently translated code segment

•• Automatic superblock formation and schedulingAutomatic superblock formation and scheduling

DAISY structure

•• Power PC code runs without modificationPower PC code runs without modification

•• DAISY specific additions separated by dotted lineDAISY specific additions separated by dotted line

•• Initially interpret PowerPC instructions and then compile afterInitially interpret PowerPC instructions and then compile after hitting hitting
thresholdthreshold

••Then schedule and save instruction in cache (2Then schedule and save instruction in cache (2--4k). Untaken branches 4k). Untaken branches
are translated as (unused) calls to the binary translatorare translated as (unused) calls to the binary translator

DAISY example

•• Here the group is expanded Here the group is expanded
to contain two conditionalsto contain two conditionals

•• Path A is encountered and Path A is encountered and
translatedtranslated

DAISY example

•• When Path B is encountered When Path B is encountered
for the first timefor the first time

•• Translator is calledTranslator is called

DAISY example

•• Code in cache is now Code in cache is now
updatedupdated

•• Paths A and B require no Paths A and B require no
further translationfurther translation

•• One One untranslateduntranslated path path
remainingremaining

•• Only translate and store code Only translate and store code
if neededif needed

DYNAMO

•• Similar to DAISY though focuses on binary to binary optimizationSimilar to DAISY though focuses on binary to binary optimizations on the s on the
same ISA. One of the claims is that it allows compilation with same ISA. One of the claims is that it allows compilation with --01 but 01 but
overtime provides overtime provides --03 performance.03 performance.

•• Catches dynamic cross module optimization opportunities missed bCatches dynamic cross module optimization opportunities missed by the y the
static compiler. Code layout optimization allowing improved schestatic compiler. Code layout optimization allowing improved scheduling due duling due
to bigger segments. Branch alignment and partial procedural to bigger segments. Branch alignment and partial procedural inlininginlining form form
part of the optimizationspart of the optimizations

•• Aimed as way of improving performance from a shipped binary overAimed as way of improving performance from a shipped binary overtimetime

•• Unlike DAISY, have to use existing hardware Unlike DAISY, have to use existing hardware -- no additional fragment no additional fragment
cache availablecache available

DYNAMO

•• Initially interprets code. This is very fast as the code is natiInitially interprets code. This is very fast as the code is native. When a ve. When a
branch is encountered check if already translatedbranch is encountered check if already translated

•• If it has been translated jump and context switch to the fragmenIf it has been translated jump and context switch to the fragment cache t cache
code and execute. Otherwise if hot translate and put in cachecode and execute. Otherwise if hot translate and put in cache

•• Over time the working set forms in the cache and Dynamo overheadOver time the working set forms in the cache and Dynamo overhead
reduces reduces -- less than 1.5less than 1.5

•• Cheap profiling, predictability Cheap profiling, predictability

•• Linear code structure in cache makes optimization cheap. StandaLinear code structure in cache makes optimization cheap. Standard rd
redundancy elimination appliedredundancy elimination applied

Just in Time Compilation

•• Key idea: lazy compilation. Defer compiling a section of high leKey idea: lazy compilation. Defer compiling a section of high level code vel code
until it is encountered during program execution. For OO programuntil it is encountered during program execution. For OO programs it has s it has
been shown that this greatly reduces the amount of code to compibeen shown that this greatly reduces the amount of code to compile. le.
Krintz'00 shows 14 to 26% reduction in total time.Krintz'00 shows 14 to 26% reduction in total time.

•• Greater knowledge of runtime context allowing optimization to beGreater knowledge of runtime context allowing optimization to be focused focused
on important parts of programon important parts of program

•• However is Just in time really Just too late? Why wait until exHowever is Just in time really Just too late? Why wait until execution time ecution time
to compile when the code may be lying around on disk for months to compile when the code may be lying around on disk for months
beforehandbeforehand

•• Main reason Main reason -- dynamic linking of code especially in Java. This restricts the dynamic linking of code especially in Java. This restricts the
optimizations availableoptimizations available

Jikes

•• Most Java compilers initially interpret, then compile and finalMost Java compilers initially interpret, then compile and finally optimize ly optimize
based on frequency of usebased on frequency of use

•• Normally done on a per method basis Normally done on a per method basis

•• Jikes instead directly compiles code when encountered to native Jikes instead directly compiles code when encountered to native machine machine
codecode

•• Well known robust research compiler freely availableWell known robust research compiler freely available

•• Much work Much work centredcentred around what level of optimization to apply and when to around what level of optimization to apply and when to
apply itapply it

Jikes structure

Jikes example

•• Simple example showing translation of byte code into native codSimple example showing translation of byte code into native codee

•• Simple optimizations to remove redundant temporaries have a sigSimple optimizations to remove redundant temporaries have a significant nificant
impact on later virtual to register mapping phasesimpact on later virtual to register mapping phases

•• First version corresponds to baseline compiler, second to most First version corresponds to baseline compiler, second to most basic basic
optimizing compilationoptimizing compilation

Method life cycle

Jikes optimizations

•• Jikes makes use of multiple optimization levels and uses these Jikes makes use of multiple optimization levels and uses these to carefully to carefully
trade cost trade cost vsvs gaingain

•• Baseline translates directly into native code simulating operandBaseline translates directly into native code simulating operand stack. No stack. No
IR, no register allocation. Slightly faster code than interpretaIR, no register allocation. Slightly faster code than interpretationtion

•• Optimizing compiler. Translate into an IR with linear register aOptimizing compiler. Translate into an IR with linear register allocation. 3 llocation. 3
further optimization levels:further optimization levels:

•• Level 0: Effective and cheap optimizations. Simple scalar Level 0: Effective and cheap optimizations. Simple scalar
optimizations and optimizations and inlininginlining trivial methods. All tend to reduce size of IRtrivial methods. All tend to reduce size of IR

•• Level 1: as 0 but with more aggressive speculative Level 1: as 0 but with more aggressive speculative inlininginlining. Multiple . Multiple
passes of level 0 opts and some code reorganizing algorithmspasses of level 0 opts and some code reorganizing algorithms

•• Level 2: employs simple loop optimizations. Normalization and Level 2: employs simple loop optimizations. Normalization and
unrolling. SSA based flowunrolling. SSA based flow--sensitive algorithms also employedsensitive algorithms also employed

Jikes optimizations

1.01.0
4.264.26
6.076.07
6.616.61

377.8377.8
9.299.29
5.695.69
1.811.81

BaselineBaseline
Level 0Level 0
Level 1Level 1
Level 2Level 2

SpeedSpeedBytecodesBytecodes/millisecond/millisecondCompilerCompiler

•• Only worthwhile compiling at a higher level if benefit outweighOnly worthwhile compiling at a higher level if benefit outweighs costs cost

•• Adaptive algorithm compares cost of code under current level Adaptive algorithm compares cost of code under current level vsvs an an
increased levelincreased level

•• Crucially depends on anticipated future profile which is unavaiCrucially depends on anticipated future profile which is unavailable. lable.
Solution Solution -- just guess just guess -- currently assume twice as long as now!currently assume twice as long as now!

Jikes optimizations

•• KrintzKrintz evaluates the adaptive approachevaluates the adaptive approach

•• Figures are time in seconds for SPECjvm98Figures are time in seconds for SPECjvm98

•• Total time is better for Adapt even though it has increased comTotal time is better for Adapt even though it has increased compilepile--
time.time.

•• Conclusion:Conclusion: knowing hotspots really helps optimizationknowing hotspots really helps optimization

0.440.44
0.460.46
0.480.48

29.2429.24
9.989.98
8.978.97

BaselineBaseline
OptOpt
AdaptAdapt

Compile timeCompile timeTotal timeTotal timeCompilerCompiler

JIT conclusions

•• JITsJITs suffer from having the necessary info too late. Need to anticipsuffer from having the necessary info too late. Need to anticipate ate
optimization opportunities.optimization opportunities.

•• Many different optimization scenarios available. Adaptive optionMany different optimization scenarios available. Adaptive option
increases level of optimization when it recompiles increasingly increases level of optimization when it recompiles increasingly used used
hotspots.hotspots.

•• As compileAs compile--time is part of runtime, important to find a tradetime is part of runtime, important to find a trade--off between off between
twotwo

ADAPT

•• ADAPT is a mixed approach to optimization that combines static ADAPT is a mixed approach to optimization that combines static and and
iterative compilation in an oniterative compilation in an on--line mannerline manner

•• Basically at runtime different options of a code section are runBasically at runtime different options of a code section are run concurrently concurrently
and the bestand the best--one selected. This is done in parallel on remote servers.one selected. This is done in parallel on remote servers.

•• Really trading space for time making an onReally trading space for time making an on--line technique viable as an online technique viable as an on--
line technique as long as sufficient space availableline technique as long as sufficient space available

•• Online iterative compilation main contributionOnline iterative compilation main contribution

•• Only works for scientific programs with relatively static behaviOnly works for scientific programs with relatively static behavioror

•• All schemes allow specialization at runtime to program and dataAll schemes allow specialization at runtime to program and data

•• Staged schemes such as Staged schemes such as DyCDyC are more powerful as they only incur are more powerful as they only incur
runtime overhead for specialization regionsruntime overhead for specialization regions

•• JIT and DBT delay everything to runtime leaving little optimizatJIT and DBT delay everything to runtime leaving little optimization ion
opportunitiesopportunities

•• All except ADAPT have a hardwired heuristic of what the best strAll except ADAPT have a hardwired heuristic of what the best strategy isategy is

•• Poor at adapting to new platformsPoor at adapting to new platforms

•• Apart from ADAPT, none looked at processor specific optimizatioApart from ADAPT, none looked at processor specific optimization. Mainly n. Mainly
looked at architecture independent optimizations or standard baclooked at architecture independent optimizations or standard backend kend
scheduling or register allocationscheduling or register allocation

•• Like PDC only used the data really for limited optimization goalLike PDC only used the data really for limited optimization goals rather s rather
than overcoming than overcoming undecidabilityundecidability or processor behavioror processor behavior

•• None of the techniques would adapt their compilation approach inNone of the techniques would adapt their compilation approach in the light the light
of experienceof experience

Summary

Combine static and dynamic optimizations?

•• Grigori Fursin, Albert Cohen, Michael O'Boyle and Olivier TemamGrigori Fursin, Albert Cohen, Michael O'Boyle and Olivier Temam. A Practical Method For . A Practical Method For
Quickly Evaluating Program Optimizations. Quickly Evaluating Program Optimizations. Proceedings of the 1st International Conference Proceedings of the 1st International Conference
on High Performance Embedded Architectures & Compilers (HiPEAC 2on High Performance Embedded Architectures & Compilers (HiPEAC 2005)005), number 3793 in , number 3793 in
LNCS, pages 29LNCS, pages 29--46, Barcelona, Spain, November 2005 46, Barcelona, Spain, November 2005

Integration of the runIntegration of the run--time adaptation into mainline GCC:time adaptation into mainline GCC:

•• Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam. and Olivier Temam.
Practical runPractical run--time adaptation with procedure cloning to enable continuous colltime adaptation with procedure cloning to enable continuous collective ective
compilation. compilation. GCC DevelopersGCC Developers’’ SummitSummit. Ottawa, Canada, July 2007. Ottawa, Canada, July 2007

Adaptation for heterogeneous systems (CELL and GPU systems)Adaptation for heterogeneous systems (CELL and GPU systems)

•• HiPEAC cluster funding to HiPEAC cluster funding to ““ExplorExploree optimization techniques and runtime code selection optimization techniques and runtime code selection
mechanisms for heterogeneous systemsmechanisms for heterogeneous systems”” for 18 months starting from September, 2006. for 18 months starting from September, 2006.
Collaboration with Collaboration with STMicroSTMicro, IBM, UPC, IBM, UPC

Run-time adaptation using procedure cloning

Any other ways to solve previous and the following problems?Any other ways to solve previous and the following problems?

•• Different program contextDifferent program context

•• Different runDifferent run--time behaviortime behavior

•• Different system loadDifferent system load

•• Different available resourcesDifferent available resources

•• Different architectures & ISADifferent architectures & ISA

For each case we want to find and use best optimization settingFor each case we want to find and use best optimization settings!s!

Run-time program behavior

Idea to enable easy static and dynamic optimizations:Idea to enable easy static and dynamic optimizations:

•• Most time during execution is spent in procedures/functions or Most time during execution is spent in procedures/functions or loopsloops

•• Clone these sections and apply different transformations staticClone these sections and apply different transformations staticallyally

•• At runAt run--time add runtime add run--time behavior analyzer routines and detect regular time behavior analyzer routines and detect regular
behaviorbehavior

•• Select appropriate code sections depending on runSelect appropriate code sections depending on run--time behavior of time behavior of
programs (code sections)programs (code sections)

•• Continuously recompile program with highContinuously recompile program with high--level transformationslevel transformations

Run-time program behavior

Repeatedly executed timeRepeatedly executed time--consuming parts of the consuming parts of the
code that allow powerful transformations:code that allow powerful transformations:

typically functions or loopstypically functions or loops

Run-time program behavior

IPC for subroutine resid of benchmark mgrid across calls

Repeatedly executed timeRepeatedly executed time--consuming parts of the consuming parts of the
code that allow powerful transformations:code that allow powerful transformations:

typically functions or loopstypically functions or loops

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 7015 7025

function calls

IP
C

ApplicationApplication

CompilerCompiler

BinaryBinary

Some existing solutions:Some existing solutions:

DatasetDataset11

OutputOutput11

Current methods

ApplicationApplication

CompilerCompiler

BinaryBinary

Some existing solutions:Some existing solutions:

DatasetDataset11

OutputOutput11

Dynamic Dynamic
optimizationsoptimizations

Current methods

ApplicationApplication

CompilerCompiler

BinaryBinary

Some existing solutions:Some existing solutions:

DatasetDataset11

OutputOutput11

Dynamic Dynamic
optimizationsoptimizations

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Current methods

ApplicationApplication

CompilerCompiler

BinaryBinary

Some existing solutions:Some existing solutions:

DatasetDataset11

OutputOutput11

Dynamic Dynamic
optimizationsoptimizations

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

CompilerCompiler

BinaryBinary

Some existing solutions:Some existing solutions:

DatasetDataset11

OutputOutput11

Iterative Iterative
optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

CompilerCompiler

BinaryBinary

Some existing solutions:Some existing solutions:

DatasetDataset11

OutputOutput11

Iterative Iterative
optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

Pros:Pros: powerful transformation powerful transformation

space explorationspace exploration

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

CompilerCompiler

BinaryBinary

Some existing solutions:Some existing solutions:

DatasetDataset11

OutputOutput11

Iterative Iterative
optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

Pros:Pros: powerful transformation powerful transformation

space explorationspace exploration

Cons:Cons: slow, one datasetslow, one dataset

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

CompilerCompiler

BinaryBinary

Can we combine both?Can we combine both?

DatasetDataset11

OutputOutput11

Iterative Iterative
optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

Combination ofCombination of
powerful transformation space exploration,powerful transformation space exploration,

runrun--time information time information
selfself--adaptable codeadaptable code

Current methods

Our approach: static multiversioning

ApplicationApplication

Select most time consuming code Select most time consuming code
sectionssections

Our approach: static multiversioning

ApplicationApplication

Create multiCreate multi--versions of time versions of time
consuming code sectionsconsuming code sections

Our approach: static multiversioning

ApplicationApplication

Add phase detection/predictionAdd phase detection/prediction

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

Our approach: static multiversioning

ApplicationApplication

Apply various transformations over Apply various transformations over
multimulti--versions of code sectionsversions of code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

TransformationsTransformations

Our approach: static multiversioning

ApplicationApplication

Apply various transformations over Apply various transformations over
multimulti--versions of code sectionsversions of code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

TransformationsTransformations

FineFine--grain internal compiler (grain internal compiler (PathScalePathScale, Open64, ORC, gcc) transformations , Open64, ORC, gcc) transformations
using Interactive Compilation Interface (ICI)using Interactive Compilation Interface (ICI)

Our approach: static multiversioning

ApplicationApplication

Apply various transformations over Apply various transformations over
multimulti--versions of code sectionsversions of code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

TransformationsTransformations

ApplicationApplication

Apply various transformations over Apply various transformations over
multimulti--versions of code sectionsversions of code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

TransformationsTransformations

Manual transformationsManual transformations

Our approach: static multiversioning

ApplicationApplication

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

Final instrumented programFinal instrumented program

Our approach: static multiversioning

void void mult(intmult(int NM)NM)
{{
int i, j, k;int i, j, k;
intint fselectfselect;;
co_adapt_select(&fselectco_adapt_select(&fselect););
if (if (fselectfselect==1) ==1) mult_clone(NMmult_clone(NM););

co_adaptco_adapt_start_start(1,0);(1,0);
for (i = 0; i < NM; i++)for (i = 0; i < NM; i++)
for (j = 0; j < NM; j++)for (j = 0; j < NM; j++)
for (k = 0; k < NM; k++)for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NMc_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];*j];

co_adaptco_adapt_stop_stop(1,(1,00););
}}

void multvoid mult_clone_clone(int NM)(int NM)
{{
int i, j, k;int i, j, k;
co_adaptco_adapt_start_start(1,(1,11););
for (i = 0; i < NM; i++)for (i = 0; i < NM; i++)
for (j = 0; j < NM; j++)for (j = 0; j < NM; j++)
for (k = 0; k < NM; k++)for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NMc_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];*j];

co_adaptco_adapt_stop_stop(1,(1,11););
}}

Our approach: static multiversioning

Run-time Adaptation

Depends on program behaviour

Programs with regular behavior

Programs with irregular behavior

Adaptation for regular behaviour

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function calls

IP
C

•• Detect regular (stable) patterns of behaviour (phases) Detect regular (stable) patterns of behaviour (phases) -- we define stability as we define stability as
3 consecutive or periodic executions with the same IPC3 consecutive or periodic executions with the same IPC

•• Predict further occurrences with the same IPC Predict further occurrences with the same IPC
(using period and length of regions with stable performance)(using period and length of regions with stable performance)

IPC for subroutine IPC for subroutine residresid of benchmark of benchmark mgridmgrid across callsacross calls

Adaptation for regular behaviour

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function calls

IP
C

IPC for subroutine IPC for subroutine residresid of benchmark of benchmark mgridmgrid across callsacross calls

period=7, length=2period=7, length=2

•• Detect regular (stable) patterns of behaviour (phases) Detect regular (stable) patterns of behaviour (phases) -- we define stability as we define stability as
3 consecutive or periodic executions with the same IPC3 consecutive or periodic executions with the same IPC

•• Predict further occurrences with the same IPC Predict further occurrences with the same IPC
(using period and length of regions with stable performance)(using period and length of regions with stable performance)

Adaptation for regular behaviour

1)1) Consider new code version evaluated after 2 consecutive executioConsider new code version evaluated after 2 consecutive executions of ns of
the code section with the same performancethe code section with the same performance

2) Ignore one next execution to avoid transitional effects2) Ignore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)3) Check baseline performance (to verify stability prediction)

Execution times for subroutine Execution times for subroutine residresid of benchmark of benchmark mgridmgrid across callsacross calls

0

0.02

0.04

0.06

0.08

0.1

0.12

1 42 70 98 213 2025

function calls

tim
e

(s
ec

)

startup (phase detection) or end of the optimization process (best option found)
evaluation of 1 option

Adaptation for regular behaviour

1)1) Consider new code version evaluated after 2 consecutive executioConsider new code version evaluated after 2 consecutive executions of ns of
the code section with the same performancethe code section with the same performance

2) Ignore one next execution to avoid transitional effects2) Ignore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)3) Check baseline performance (to verify stability prediction)

Execution times for subroutine resid of benchmark mgrid across calls

0

0.02

0.04

0.06

0.08

0.1

0.12

1 42 70 98 213 2025

function calls

tim
e

(s
ec

)

startup (phase detection) or end of the optimization process (best option found)
evaluation of 1 option

1 2 3 1 2 3

Adaptation for regular behaviour

Adaptation for irregular behaviour

0
50

100
150
200
250
300
350

1 11 21 31 41

function calls

Ex
ec

ut
io

n
tim

e,
 m

s
Execution time for library subroutine matmul (with 2 different vExecution time for library subroutine matmul (with 2 different versions)ersions)

Adaptation for irregular behaviour

0
50

100
150
200
250
300
350

1 11 100 110

function calls

Ex
ec

ut
io

n
tim

e,
 m

s

•• Select versions randomly during a time slotSelect versions randomly during a time slot

•• At each step calculate execution time per function call and vaAt each step calculate execution time per function call and varianceriance

•• When variance for all versions is less than some threshold selWhen variance for all versions is less than some threshold select the best oneect the best one

Execution time for library subroutine matmul (with 2 different vExecution time for library subroutine matmul (with 2 different versions)ersions)

•• Select versions randomly during a time slotSelect versions randomly during a time slot

•• At each step calculate execution time per function call and vaAt each step calculate execution time per function call and varianceriance

•• When variance for all versions is less than some threshold selWhen variance for all versions is less than some threshold select the best oneect the best one

•• Periodically select nonPeriodically select non--best version to check if behavior changedbest version to check if behavior changed

Adaptation for irregular behaviour

0
50

100
150
200
250
300
350

1 11 100 110

function calls

Ex
ec

ut
io

n
tim

e,
 m

s
Execution time for library subroutine matmul (with 2 different vExecution time for library subroutine matmul (with 2 different versions)ersions)

•• Select versions randomly during a time slot (adaptation slot)Select versions randomly during a time slot (adaptation slot)

•• At each step calculate execution time per function call and vaAt each step calculate execution time per function call and varianceriance

•• When variance for all versions is less than some threshold selWhen variance for all versions is less than some threshold select the best oneect the best one

•• Periodically select nonPeriodically select non--best version to check if behavior changedbest version to check if behavior changed

•• If the variance increases, adapt againIf the variance increases, adapt again

Adaptation for irregular behaviour

0
50

100
150
200
250
300
350

1 11 100 110 120 130 140 150 160

function calls

Ex
ec

ut
io

n
tim

e,
 m

s
Execution time for library subroutine matmul (with 2 different vExecution time for library subroutine matmul (with 2 different versions)ersions)

Determine the effect of optimizations

Use Use gprofgprof to collect time spent in functions and clonesto collect time spent in functions and clones

time spent in function time spent in function avtavt originaloriginal
avtavt (average time) = (average time) = -- , , s (speedup) = s (speedup) = ------------------------------

number of callsnumber of calls avtavtclonedcloned

Continuous Optimization FrameworkContinuous Optimization Framework
sequence of evaluations: speedups ssequence of evaluations: speedups s11, s, s22, , …… ssnn

e (expected speedup) = e (expected speedup) =

v (variance) = v (variance) =

Continuously monitor the variance to detect convergence Continuously monitor the variance to detect convergence
across executionsacross executions

Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not
direct but through array of functions:direct but through array of functions:

static void (*call1[..])();static void (*call1[..])();
static void (*call2[..])();static void (*call2[..])();ApplicationApplication

Select best code sectionsSelect best code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not
direct but through array of functions:direct but through array of functions:

static void (*call1[..])();static void (*call1[..])();
static void (*call2[..])();static void (*call2[..])();

If highIf high--overhead is detected overhead is detected ––
substitute call with substitute call with dummydummy functionfunction

ApplicationApplication

Select best code sectionsSelect best code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not
direct but through array of functions:direct but through array of functions:

static void (*call1[..])();static void (*call1[..])();
static void (*call2[..])();static void (*call2[..])();

If highIf high--overhead is detected overhead is detected ––
substitute call with substitute call with dummydummy functionfunction

To be able to adapt to new program To be able to adapt to new program
behavior later at runbehavior later at run--time, time,
periodically periodically restorerestore all calls to all calls to
adaptation routinesadaptation routines

ApplicationApplication

Select best code sectionsSelect best code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

Continuous optimization and adaptation

ApplicationApplication

Select best code sectionsSelect best code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

One or multiple executions One or multiple executions
with the same or different datasets:with the same or different datasets:

Preload Preload
Behaviour Behaviour

TableTable
if more than if more than

one runone run

SaveSave
Behaviour Behaviour

TableTable

Execution times for subroutine resid of benchmark mgrid across calls

0
0.02
0.04
0.06
0.08
0.1

0.12

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

tim
e

(s
ec

)

1st run

Continuous optimization and adaptation

Continuous optimization and adaptation

0
0.02
0.04
0.06
0.08
0.1

0.12

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

tim
e

(s
ec

)
Execution times for subroutine resid of benchmark mgrid across calls

2st run, same optimizations

Continuous optimization and adaptation

DEMO 2DEMO 2

Benchmark Benchmark susansusan edges from edges from MiBenchMiBench

Clone function Clone function susan_edgessusan_edges and put to 2 separate filesand put to 2 separate files
Substitute Substitute susan_edgessusan_edges with the following:with the following:

susan_edges(in,r,mid,bp,max_no,x_size,y_sizesusan_edges(in,r,mid,bp,max_no,x_size,y_size))
ucharuchar *in, **in, *bpbp, *mid;, *mid;
intint *r, *r, max_nomax_no, , x_sizex_size, , y_sizey_size;;

{{
float z;float z;
intint do_symmetrydo_symmetry, i, j, m, n, a, b, x, y, w;, i, j, m, n, a, b, x, y, w;
ucharuchar c,*p,*cp;c,*p,*cp;

if ((rand() % 2) == 0) susan_edges0(in,r,mid,bp,max_no,x_size,if ((rand() % 2) == 0) susan_edges0(in,r,mid,bp,max_no,x_size,y_size);y_size);
else susan_edges1(in,r,mid,bp,max_no,x_size,else susan_edges1(in,r,mid,bp,max_no,x_size,y_size);y_size);

}}

compile: GCC compile: GCC ––O1 *.c GCC O1 *.c GCC ––O3 *.c O3 *.c gccgcc ––c c ––O1 O1 susan.csusan.c, susan0.c & , susan0.c & gccgcc ––c c ––O3 susan1.c & O3 susan1.c & gccgcc ––O1 *.oO1 *.o
runrun
exec.timeexec.time: 10.5 s. 7.5 s.: 10.5 s. 7.5 s.
profile: profile: susan_edges0: 3.7 s.susan_edges0: 3.7 s.

susan_edges1: 2.5 s.susan_edges1: 2.5 s.

Using this simple cloning technique can understand the influenceUsing this simple cloning technique can understand the influence of transformations on part of the code of transformations on part of the code
during one execution. Instead of random function can use some adduring one execution. Instead of random function can use some adaptation routines!aptation routines!

Conclusions

•• No sophisticated dynamic optimization/recompilation frameworks;No sophisticated dynamic optimization/recompilation frameworks;

•• Allows complex sequences of compiler or manual transformations Allows complex sequences of compiler or manual transformations at runat run--time; time;

•• Uses simple lowUses simple low--overhead adaptation technique (for codes with regular and overhead adaptation technique (for codes with regular and
irregular behaviour);irregular behaviour);

•• Combines manual and compiler transformations due to the sourceCombines manual and compiler transformations due to the source--toto--source source
versioning approachversioning approach

•• Enables selfEnables self--tuning applications adaptable to program and system behaviour, tuning applications adaptable to program and system behaviour,
and portable across different architecturesand portable across different architectures

•• Enables continuous optimizations across runs with different datEnables continuous optimizations across runs with different datasets, asets,
transparently to a usertransparently to a user

•• Can be used for parallel heterogeneous computing (compilation wCan be used for parallel heterogeneous computing (compilation with different ith different
ISA for CELL or GPUISA for CELL or GPU--like architectures or various accelerators)like architectures or various accelerators)

•• Reliable, secure, with easy debuggingReliable, secure, with easy debugging

Conclusions

However:However:

•• Still no optimization knowledge reuseStill no optimization knowledge reuse

•• Better placement of instrumentation for adaptation is neededBetter placement of instrumentation for adaptation is needed

•• Better dataset specialization is needed (for library adaptationBetter dataset specialization is needed (for library adaptation))

Machine learning based optimizations

OverviewOverview

•• Machine learning Machine learning -- what is it and why is it useful?what is it and why is it useful?

•• Predictive modelingPredictive modeling

•• Loop unrolling and Loop unrolling and inlininginlining

•• Attempt to generalize program optimizationsAttempt to generalize program optimizations

•• Limits and other uses of machine learningLimits and other uses of machine learning

•• Future work and summaryFuture work and summary

Failings of previous approaches

•• Before we have looked at techniques to overcome data dependent Before we have looked at techniques to overcome data dependent
behavior and adaption to new processorsbehavior and adaption to new processors

•• However, we have not looked fundamentally at However, we have not looked fundamentally at process of designing a process of designing a
compilercompiler

•• All rely on a All rely on a ““cleverclever”” algorithm inserted into the compiler that determines at algorithm inserted into the compiler that determines at
compilecompile--time or runtime which optimizations to applytime or runtime which optimizations to apply

•• Iterative compilation goes beyond this with no a priori knowledgIterative compilation goes beyond this with no a priori knowledge but is not e but is not
suitable for general compilations and does not adapt to changingsuitable for general compilations and does not adapt to changing datadata

•• What we want is a smart compiler that What we want is a smart compiler that adapts its strategy adapts its strategy to changes in to changes in
program, data and processorprogram, data and processor

Machine learning as a solution

•• Well established area of AI, neural networks, genetic algorithmWell established area of AI, neural networks, genetic algorithms etc. but s etc. but
what has AI got to do with compilation?what has AI got to do with compilation?

•• In a very simplistic sense machine learning can be considered asIn a very simplistic sense machine learning can be considered as
sophisticated form of curve fittingsophisticated form of curve fitting

Machine learning

•• The inputs are characteristics of the program and processor. OutThe inputs are characteristics of the program and processor. Outputs, the puts, the
optimization function we are interested in, execution time poweroptimization function we are interested in, execution time power or code or code
sizesize

•• Theoretically predict future behavior and find the best optimizaTheoretically predict future behavior and find the best optimizationtion

Global optimization and predictive modeling

•• For our purposes it is possible to consider machine learning as For our purposes it is possible to consider machine learning as global global
optimizationoptimization and and predictive modelingpredictive modeling

•• Global optimization Global optimization tries to find the best point in a space. This is achieved tries to find the best point in a space. This is achieved
by selecting new points, evaluating them and then based on accumby selecting new points, evaluating them and then based on accumulated ulated
information selecting a new point as a potential optimuminformation selecting a new point as a potential optimum

•• Hill walking Hill walking and and genetic algorithms genetic algorithms are obvious examples. Very strong link are obvious examples. Very strong link
with iterative compilationwith iterative compilation

•• Predictive modeling Predictive modeling learns about the optimizations space to build a model. learns about the optimizations space to build a model.
Then uses this model to select the optimum point. Closely relateThen uses this model to select the optimum point. Closely related to global d to global
optimizationoptimization

Predictive modeling

•• Predictive modeling techniques all have the property that they tPredictive modeling techniques all have the property that they try to learn ry to learn
a model that describes the correlation between inputs and outputa model that describes the correlation between inputs and outputss

•• This can be a classification or a function or Bayesian probabiliThis can be a classification or a function or Bayesian probability ty
distributiondistribution

•• Distinct training and test data. Compiler writers don't make thDistinct training and test data. Compiler writers don't make this distinction!is distinction!

Predictive modeling as a proxy

•• The model acts as a fast evaluator for program. Automates The model acts as a fast evaluator for program. Automates Soffa'sSoffa's
performance prediction framework and speeds up iterative compilaperformance prediction framework and speeds up iterative compilationtion

•• Nobody has done this yet! Feature selection and accuracy are maiNobody has done this yet! Feature selection and accuracy are main n
problems!problems!

Training data

•• Crucial to this working is correct selection of Crucial to this working is correct selection of training datatraining data

•• The data has to be rich enough to cover the space of programs liThe data has to be rich enough to cover the space of programs likely to be kely to be
encounteredencountered

•• If we wish to learn over different processors so that the systemIf we wish to learn over different processors so that the system can port can port
then we also need sufficient coverage here toothen we also need sufficient coverage here too

•• In practice it is very difficult to formally state the space of In practice it is very difficult to formally state the space of possibly possibly
interesting programsinteresting programs

•• Ideas include typical kernels and compositions of them. HierarchIdeas include typical kernels and compositions of them. Hierarchical ical
benchmark suites could help herebenchmark suites could help here

Feature selection of programs

•• Crucial problem with machine learning is Crucial problem with machine learning is feature selectionfeature selection. Which features . Which features
of a program are likely to predict it's eventual behavior?of a program are likely to predict it's eventual behavior?

•• In a sense, features should be a compact representation of a proIn a sense, features should be a compact representation of a program that gram that
capture the essential performance related aspects and ignore thecapture the essential performance related aspects and ignore the irrelevantirrelevant

•• Clearly, the number of spaces in the program is unlikely to be sClearly, the number of spaces in the program is unlikely to be significant ignificant
nor the user commentsnor the user comments

•• Compiler Compiler IRsIRs are a good starting point as they are condensed program are a good starting point as they are condensed program
representationrepresentation

•• Loop nest depth, controlLoop nest depth, control--flow graph structure, recursion, pointer based flow graph structure, recursion, pointer based
accesses, data structureaccesses, data structure

Supervised learning

•• Building a model based on given inputs and outputs is an exampleBuilding a model based on given inputs and outputs is an example of of
classical supervised learningclassical supervised learning. We direct the system to find correlations . We direct the system to find correlations
between selected input features and output behaviorbetween selected input features and output behavior

•• In fact In fact unsupervised learning unsupervised learning may be more useful in the long run. may be more useful in the long run.
Generate a large number of examples and features and allow the sGenerate a large number of examples and features and allow the system to ystem to
classify them into related groups with shared behaviorclassify them into related groups with shared behavior

•• This prevents missing important features and provide clues as toThis prevents missing important features and provide clues as to what what
aspects of a program are performance determiningaspects of a program are performance determining

•• However, we need many more programs However, we need many more programs combinatoriallycombinatorially than features to than features to
distinguish between themdistinguish between them

Space to learn over

• Formalization of compiler optimization has not been taken really seriously

• However, in order to utilize predictive modeling, we need a descriptions of
the program space that allows discrimination between different choices

• Rather than just having a sophisticated model, what we want is a system
that given a program automatically provides the best optimization

• To do this means that we must have a good description of the
transformation space

• The shape of the optimization space will be critical for learning. Clearly
linear regression will not fit the spaces seen before

Which techniques work?

•• Short answer: No one knows!Short answer: No one knows!

•• It depends on the structure of the problem space (distribution oIt depends on the structure of the problem space (distribution of minima) f minima)
and representation of the problemand representation of the problem

•• One problem particular to compilation is that feature inputs varOne problem particular to compilation is that feature inputs vary in size: y in size:
length of program, length of transformation sequence, order of length of program, length of transformation sequence, order of
transformations, etctransformations, etc

•• Also we have no agreed way of representing our problem. Several Also we have no agreed way of representing our problem. Several of the of the
following examples have used different techniquesfollowing examples have used different techniques

•• Safe to say that the level of ML sophistication is low. Seems thSafe to say that the level of ML sophistication is low. Seems that currently at currently
compiler writers tend to try simple things first without too muccompiler writers tend to try simple things first without too much h mathsmaths
(though this is gradually changing with the (though this is gradually changing with the polyhedral transformationspolyhedral transformations being being
added to the mainline GCC and XLS compilers) !added to the mainline GCC and XLS compilers) !

Learning to unroll

•• MonsifortMonsifort uses machine learning to determine whether or not it is uses machine learning to determine whether or not it is
worthwhile unrolling a loopworthwhile unrolling a loop

•• Rather than building a model to determine the performance benefiRather than building a model to determine the performance benefit of t of
loop unrolling, try to classify whether or not loop unrolling isloop unrolling, try to classify whether or not loop unrolling is worthwhileworthwhile

•• For each training loop, loop unrolling was performed and speedupFor each training loop, loop unrolling was performed and speedup
recordedrecorded

•• This output was translated into This output was translated into ““goodgood””, , ““badbad”” or or ““no changeno change””

•• The loop features were then stored alongside the output ready foThe loop features were then stored alongside the output ready for r
learninglearning

Learning to unroll

• Features used were based on inner loop characteristics

• The model induced is a partitioning of the feature space. The space was
partitioned into those sections where unrolling is good, bad or unchanged

• This division was hyperplanes in the feature space that can easily be
represented by a decision tree

• This learnt model is the easily used at compile time. Extract the features of
the loop and see which section they belong too

• Although easy to construct requires regions in space to be convex. Not true
for combined transformations

Learning to unroll

•• Features try to capture structure that may affect unrolling deciFeatures try to capture structure that may affect unrolling decisionssions

•• Again allows programs to be mapped to fixed feature vectorAgain allows programs to be mapped to fixed feature vector

•• Feature selection can be guided by metrics used in existing handFeature selection can be guided by metrics used in existing hand--written written
heuristicsheuristics

featuresfeatures

Results

•• Classified examples give correct result in 85% cases. Better at Classified examples give correct result in 85% cases. Better at picking picking
negative cases due to bias in training setnegative cases due to bias in training set

•• Gave an average 4% and 6% reduction in execution time on Gave an average 4% and 6% reduction in execution time on UltrasparcUltrasparc
and IA64 compared to 1and IA64 compared to 1

•• However g77 compiler is an easy compiler to improve upon at thatHowever g77 compiler is an easy compiler to improve upon at that timetime

•• Basic approach Basic approach -- unroll factor not consideredunroll factor not considered

Meta-compilation

•• Name comes from optimizing a heuristic rather than optimizing a Name comes from optimizing a heuristic rather than optimizing a programprogram

•• Stephenson et al 2003 used Stephenson et al 2003 used genetic programming genetic programming to tune to tune hyperblockhyperblock
selectionselection, , register allocationregister allocation, and , and data data prefetchingprefetching within the within the Trimaran'sTrimaran's
IMPACT compilerIMPACT compiler

•• Represent heuristic as a parse tree. Apply mutation and cross ovRepresent heuristic as a parse tree. Apply mutation and cross over to a er to a
population of parse trees and measure fitness.population of parse trees and measure fitness.

•• Crossover = swap nodes from 2 random parse treesCrossover = swap nodes from 2 random parse trees

•• Mutate randomly: selected a node and replace with a random expreMutate randomly: selected a node and replace with a random expressionssion

Results

•• Two of the preTwo of the pre--existing heuristics were not well implementedexisting heuristics were not well implemented

•• For For hyperblockhyperblock selection speedup of 1.09 on test setselection speedup of 1.09 on test set

•• For data For data prefetchingprefetching the results are worse the results are worse -- just 1.01 speedupjust 1.01 speedup

•• The authors even admit that turning off data The authors even admit that turning off data prefetchingprefetching completely is completely is
preferable and reduces many of their gainspreferable and reduces many of their gains

•• The third optimization, register allocation is better implementeThe third optimization, register allocation is better implemented but only d but only
able to achieve on average a 2% increase over the manually tunedable to achieve on average a 2% increase over the manually tuned heuristicheuristic

•• GP is not a focused technique, IMPACT is not of a commercial quaGP is not a focused technique, IMPACT is not of a commercial qualitylity

Learning over UTF

•• Shun (2004) uses Pugh's UTF framework to search for good Java Shun (2004) uses Pugh's UTF framework to search for good Java
optimizationsoptimizations

•• Space of optimization to learn included entire UTF. Training datSpace of optimization to learn included entire UTF. Training data gathered a gathered
by using a smart iterative searchby using a smart iterative search

•• Then using a similar feature extraction to Then using a similar feature extraction to MonsifortMonsifort classify all found classify all found
resultsresults

•• Uses nearest Uses nearest neighbourneighbour based learning able to achieve 70% of the based learning able to achieve 70% of the
possible performance found using iterative compilation on crosspossible performance found using iterative compilation on cross--validated validated
test datatest data

•• Larger experimental set needed to validate results. Going beyondLarger experimental set needed to validate results. Going beyond loop loop
based transformations for Javabased transformations for Java

Learning to inline

•• InliningInlining is the number one optimization in JIT compilers. Many papers is the number one optimization in JIT compilers. Many papers
from IBM on adaptive algorithms to get it right in Jikesfrom IBM on adaptive algorithms to get it right in Jikes

•• Can we use machine learning to improve this highly tuned heuristCan we use machine learning to improve this highly tuned heuristic? ic?
Tough problem. Similar to metaTough problem. Similar to meta--optimization goaloptimization goal

•• Cavazos (2005) looked at automatically determining inline heurisCavazos (2005) looked at automatically determining inline heuristics tics
under different under different scenariosscenarios

•• Opt Opt vsvs Adapt Adapt -- different user compiler options. Total time different user compiler options. Total time vsvs run time run time vsvs a a
balance balance -- compile time is part of runtimecompile time is part of runtime

•• x86 x86 vsvs PPC PPC -- can the strategy port across platformcan the strategy port across platform

Learning a heuristic

•• Focus on tuning parameters of an existing heuristic rather thanFocus on tuning parameters of an existing heuristic rather than
generating a new one from scratchgenerating a new one from scratch

•• Features are Features are dynamicdynamic. Learn off. Learn off--line and applied heuristic online and applied heuristic on--lineline

Parameters found

• Considerable variation across scenario

• For instance on x86, Bal and Total similar except for the CallerMaxSize

• A priori these values could not be predetermined

Learning to inline

• Initially tried rule induction - failed miserably. Not clear at this stage why

• Difficult to determine whether optimization has impact

• Next used a genetic algorithm to find a good heuristic

• For each scenario asked the GA to find the best geometric mean over the
training set. Using search for learning

• Training set used - Specjvm98, test set - DaCapo including Specjbb

• Focused learning on choosing the right numeric parameters of a fixed
heuristic

• Applied this to a test set comparing against IBM heuristic

More general approaches?More general approaches?

Static characterization of programs

F. Agakov, E. Bonilla, F. Agakov, E. Bonilla, J.CavazosJ.Cavazos, , B.FrankeB.Franke, G. Fursin, M.F.P. O'Boyle, , G. Fursin, M.F.P. O'Boyle, J.ThomsonJ.Thomson, M. Toussaint and C.K.I. Williams. Using , M. Toussaint and C.K.I. Williams. Using
Machine Learning to Focus Iterative Optimization. Machine Learning to Focus Iterative Optimization. Proceedings of the 4th Annual International Symposium on Code Proceedings of the 4th Annual International Symposium on Code
Generation and Optimization (CGO)Generation and Optimization (CGO), New York, NY, USA, March 2006, New York, NY, USA, March 2006

•• Embedded systems applicationEmbedded systems application

•• UTDSP benchmarks: compute intensive DSPUTDSP benchmarks: compute intensive DSP

•• AMD Au1500, AMD Au1500, gccgcc 3.2.1, 3.2.1, --O3O3

•• TI C6713, TI compiler v2.21, TI C6713, TI compiler v2.21, --O3O3

•• Exhaustively enumerated optimization search spaceExhaustively enumerated optimization search space

•• 14 transformations selected14 transformations selected

•• all combinations of length 5 evaluatedall combinations of length 5 evaluated

•• Allows comparison of techniquesAllows comparison of techniques

•• How near the minima each technique approachesHow near the minima each technique approaches

•• Rate of improvementRate of improvement

•• Characterization of the spaceCharacterization of the space

Static characterization of programs

Search space = Search space = 396000396000
program transformationsprogram transformations

Predict Predict 2..102..10 best best
transformations from this transformations from this
space based on program space based on program

features and previous features and previous
optimization experienceoptimization experience

Focusing search (offFocusing search (off--line training):line training):

•• Independent identically distributed (IID) modelIndependent identically distributed (IID) model
•• Markov modelMarkov model

Predicting best transformation for a new program:Predicting best transformation for a new program:
•• Static featuresStatic features
•• Nearest neighbors classifierNearest neighbors classifier

Dynamic characterization of programs

Previously we used Previously we used static code featuresstatic code features to obtain good to obtain good
optimizations for new programsoptimizations for new programs

However, it is difficult or impossible to characterize However, it is difficult or impossible to characterize
program runprogram run--time behaviortime behavior on modern complex on modern complex
architecture using only static code featuresarchitecture using only static code features

Performance counters provide a Performance counters provide a compact summary of compact summary of
a programa program’’s dynamic behaviors dynamic behavior

How to use them to select good optimization settings?How to use them to select good optimization settings?

John Cavazos,John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.OGrigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’’Boyle and Olivier Temam. Boyle and Olivier Temam.
Rapidly Selecting Good Compiler Optimizations using Performance Rapidly Selecting Good Compiler Optimizations using Performance Counters. Proceedings of the 5Counters. Proceedings of the 5th th
Annual International Symposium on Code Generation and OptimizatiAnnual International Symposium on Code Generation and Optimization (CGO), San Jose, USA, March on (CGO), San Jose, USA, March
20072007

General optimizations

Predictive modeling using logistic regressionPredictive modeling using logistic regression

General optimizations

Using modelsUsing models

Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Problem: Problem:
greater number of memory accesses per instruction than averagegreater number of memory accesses per instruction than average

Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Solving all performance issues one by one is slow and can be Solving all performance issues one by one is slow and can be
inefficient due to their noninefficient due to their non--linear dependencies linear dependencies ……

Dynamic characterization of programsDynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Solving all performance issues one by one is slow and can be Solving all performance issues one by one is slow and can be
inefficient due to their noninefficient due to their non--linear dependencies linear dependencies ……

CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME !CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME !

Experimental Results

Performance of SPEC INT 2000 Benchmarks using static code
features and dynamic features

Machine learning for DSE
Speeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space Exploration

Problems:Problems:
–– Developing an optimizing compiler for new architecture is difficDeveloping an optimizing compiler for new architecture is difficult ult

particularly when only simulator is availableparticularly when only simulator is available

–– Tuning such compiler requires many runsTuning such compiler requires many runs

–– Simulators are orders of magnitude slower than real processorsSimulators are orders of magnitude slower than real processors

–– Therefore compiler tuning is highly restrictedTherefore compiler tuning is highly restricted

Goal:Goal:
develop a technique to automatically build a performance model fdevelop a technique to automatically build a performance model for predicting or predicting
the impact of program transformations on any architecture, basedthe impact of program transformations on any architecture, based on a limited on a limited
number of automatically selected runsnumber of automatically selected runs

John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, MiJohn Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael F.P. O'Boyle, Grigori Fursin chael F.P. O'Boyle, Grigori Fursin
and Olivier Temam. Automatic Performance Model Construction for and Olivier Temam. Automatic Performance Model Construction for the Fast Software Exploration of the Fast Software Exploration of
New Hardware Designs. International Conference on Compilers, ArcNew Hardware Designs. International Conference on Compilers, Architecture, And Synthesis For hitecture, And Synthesis For
Embedded Systems (CASES 2006), Seoul, Korea, October 2006Embedded Systems (CASES 2006), Seoul, Korea, October 2006

Machine learning for DSE

FeaturesFeatures--based modelbased model
Input:Input: static features extracted from the transformed program static features extracted from the transformed program

at the source levelat the source level
Output:Output: program speedupprogram speedup

Machine learning for DSE

R
ea

ct
io

ns
-b

as
ed

 m
od

el

Pr
og

ra
m

Canonical
transformations

A
rc

hi
te

ct
ur

e

Speedups

t1

t2

tK

s1

s2

sK

Predicted
best speedup,

best
transformation,

etc

ReactionsReactions--based modelbased model
Input:Input: speedups on canonical transformation sequencesspeedups on canonical transformation sequences
Output: Output: transformation sequence speeduptransformation sequence speedup

Machine learning for DSE

Reliable performance model after a few probes Reliable performance model after a few probes →→ fast searchfast search

Speeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space Exploration

Conclusions

• We believe that machine learning will revolutionize compiler optimization
and will become mainstream within a decade for both compiler
optimizations, run-time adaptation, parallelization and architecture design
space exploration

• However, it is not a panacea, solving all our problems

• Fundamentally, it is an automatic curve fitter. We still have to choose the
parameters to fit and the space to optimize over

• Complexity of space makes a big difference. Tried using Gaussian process
predicting on PFDC'98 spaces - worse than random selection…

• Much remains to be done - fertile research area

Continuous Collective CompilationContinuous Collective Compilation
http://gcchttp://gcc--ccc.sourceforge.netccc.sourceforge.net

Literature

•• Hennessy and Patterson: Hennessy and Patterson: Computer Architecture: A Quantitative Approach
(4th Edition), Morgan Kaufmann, 2006

• Steven Muchnick: Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997

• Randy Allen, Ken Kennedy: Optimizing compilers for modern architectures,
Morgan Kaufmann, 2002

• Keith D. Cooper, Linda Torczon: Engineering a Compiler, Morgan
Kaufmann, 2004

Literature
•• D. Bacon, S. Graham and O. Sharp: Compiler Transformations for D. Bacon, S. Graham and O. Sharp: Compiler Transformations for HighHigh--Performance Computing. ACM Computing Surveys, Volume 26, Performance Computing. ACM Computing Surveys, Volume 26,
Issue 4, 1999Issue 4, 1999

•• R.C. Whaley, A. R.C. Whaley, A. PetitetPetitet and J. and J. DongarraDongarra: ATLAS project, Parallel Computing, 2001 : ATLAS project, Parallel Computing, 2001

•• S.L. Graham, P.B. Kessler, and M.K. S.L. Graham, P.B. Kessler, and M.K. McKusickMcKusick: : GprofGprof: A call graph execution profiler. Proceedings of the 1982 SIGPL: A call graph execution profiler. Proceedings of the 1982 SIGPLAN Symposium on AN Symposium on
Compiler Construction, pages 120Compiler Construction, pages 120--126, June 1982126, June 1982

•• T. Ball and J.R. T. Ball and J.R. LarusLarus: Efficient Path Profiling, International Symposium on : Efficient Path Profiling, International Symposium on MicroarchitectureMicroarchitecture, pages 46, pages 46--57, 199657, 1996

•• T. Ball, P. T. Ball, P. MatagaMataga and M. and M. SagivSagiv: Edge Profiling versus Path Profiling: The Showdown, In Symposi: Edge Profiling versus Path Profiling: The Showdown, In Symposium on Principles of Programming um on Principles of Programming
Languages, Jan. 1998Languages, Jan. 1998

•• B. B. AartsAarts, M. , M. BarreteauBarreteau, F. , F. BodinBodin, P. , P. BrinkhausBrinkhaus, , Z.ChamskiZ.Chamski, H., H.--P. Charles, C. P. Charles, C. Eisenbeis,JEisenbeis,J. . GurdGurd, , J.HoogerbruggeJ.Hoogerbrugge, P. , P. HuHu, W. , W. JalbyJalby, ,
P.M.W. Knijnenburg, M.F.P O'Boyle, E. Rohou, R. P.M.W. Knijnenburg, M.F.P O'Boyle, E. Rohou, R. SakellariouSakellariou, H. , H. SchepersSchepers, A. , A. SeznecSeznec, E.A. , E.A. StohrStohr, M. , M. VerhoevenVerhoeven and H.A.G. and H.A.G. WijshoffWijshoff: :
OCEANS: Optimizing Compilers for Embedded Applications, in proceOCEANS: Optimizing Compilers for Embedded Applications, in proceedings of EuroPar'97, LNCSedings of EuroPar'97, LNCS--1300, pages 13511300, pages 1351--1356, 19971356, 1997

•• F. F. BodinBodin, T. , T. KisukiKisuki, P. , P. Knijnenburg,MKnijnenburg,M. O. O’’Boyle and E. Rohou: Iterative compilation in a nonBoyle and E. Rohou: Iterative compilation in a non--linear linear optimisationoptimisation space, in proceedings of space, in proceedings of
the Workshop on Profile and Feedback Directed Compilation,1998the Workshop on Profile and Feedback Directed Compilation,1998

•• K. D. Cooper, P. J. K. D. Cooper, P. J. SchielkeSchielke, and D. Subramanian: Optimizing for reduced code space using ge, and D. Subramanian: Optimizing for reduced code space using genetic algorithms, in proceedings of the netic algorithms, in proceedings of the
Conference on Languages, Compilers, and Tools for Embedded SysteConference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1ms (LCTES), pages 1––9, 19999, 1999

•• GG..GG..FursinFursin, , MM..FF..PP..OO’’BoyleBoyle, , and Pand P..MM..WW. . Knijnenburg:Knijnenburg: Evaluating Iterative Compilation, in proceedings of the 15th WorEvaluating Iterative Compilation, in proceedings of the 15th Workshop on kshop on
Languages and Compilers for Parallel Computing (LCPCLanguages and Compilers for Parallel Computing (LCPC’’02), College Park, MD, USA, pages 30502), College Park, MD, USA, pages 305--315, 2002315, 2002

•• K. D. Cooper, D. Subramanian, and L. K. D. Cooper, D. Subramanian, and L. TorczonTorczon: Adaptive optimizing compilers for the 21st century, journal of: Adaptive optimizing compilers for the 21st century, journal of Supercomputing, 23(1), Supercomputing, 23(1),
20022002

•• G.G. Fursin: Iterative Compilation and Performance Prediction for NuFursin: Iterative Compilation and Performance Prediction for Numerical Applications, Ph.D. thesis, University of Edinburgh, Edimerical Applications, Ph.D. thesis, University of Edinburgh, Edinburgh, nburgh,
UK, January 2004UK, January 2004

Literature
•• K. D. Cooper, A. K. D. Cooper, A. GrosulGrosul, T. J. Harvey, S. Reeves, D. Subramanian, L. , T. J. Harvey, S. Reeves, D. Subramanian, L. TorczonTorczon, and T. Waterman: Acme: adaptive compilation made , and T. Waterman: Acme: adaptive compilation made
efficient, in proceedings of the Conference on Languages, Compilefficient, in proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 69ers, and Tools for Embedded Systems (LCTES), pages 69––77, 200577, 2005

•• B. Franke, M. O'Boyle, J. Thomson and G. Fursin: Probabilistic SB. Franke, M. O'Boyle, J. Thomson and G. Fursin: Probabilistic Sourceource--Level Optimisation of Embedded Systems Software, in Level Optimisation of Embedded Systems Software, in
proceedings of the Conference on Languages, Compilers, and Toolsproceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTESfor Embedded Systems (LCTES’’05), pages 7805), pages 78--86, Chicago, IL, USA, 86, Chicago, IL, USA,
June 2005June 2005

•• G. Fursin and A. Cohen: Building a Practical Iterative InteractG. Fursin and A. Cohen: Building a Practical Iterative Interactive Compiler, in proceedings of the 1ive Compiler, in proceedings of the 1stst International Workshop on Statistical International Workshop on Statistical
and Machine Learning Approaches Applied to Architectures and Comand Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), Ghent, Belgium, January 2007pilation (SMART'07), Ghent, Belgium, January 2007

•• S. S. TriantafyllisTriantafyllis, M. , M. VachharajaniVachharajani, N. , N. VachharajaniVachharajani and D. August: Compiler optimizationand D. August: Compiler optimization--space exploration, in proceedings of the space exploration, in proceedings of the
International Symposium on Code Generation and Optimization (CGOInternational Symposium on Code Generation and Optimization (CGO), pages 204), pages 204––215, 2003215, 2003

•• P. P. KulkarniKulkarni, D. , D. WhalleyWhalley, G. Tyson and J. Davidson: Evaluating heuristic optimization ph, G. Tyson and J. Davidson: Evaluating heuristic optimization phase order search algorithms, in proceedings of the ase order search algorithms, in proceedings of the
International Symposium on Code Generation and Optimization (CGOInternational Symposium on Code Generation and Optimization (CGO’’07), pages 15707), pages 157––169, March 2007169, March 2007

•• G. Fursin, J. Cavazos, M.F.P. OG. Fursin, J. Cavazos, M.F.P. O’’Boyle and O. Temam: MiDataSets: Creating The Conditions For A MoBoyle and O. Temam: MiDataSets: Creating The Conditions For A More Realistic Evaluation of Iterative re Realistic Evaluation of Iterative
Optimization, in proceedings of the Optimization, in proceedings of the International Conference on High Performance Embedded ArchitectuInternational Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2007), res & Compilers (HiPEAC 2007),
Ghent, Belgium, January 2007Ghent, Belgium, January 2007

•• B. Grant, M. Mock, M. B. Grant, M. Mock, M. PhiliposePhilipose, C. Chambers and S.J. Eggers: , C. Chambers and S.J. Eggers: DyCDyC: An Expressive Annotation: An Expressive Annotation--Directed Dynamic Compiler for C, Directed Dynamic Compiler for C,
Theoretical Computer Science, volume 248, number 1Theoretical Computer Science, volume 248, number 1--2, pages 1472, pages 147--199, 2000199, 2000

•• M.MockM.Mock, C. Chambers and , C. Chambers and S.J.EggersS.J.Eggers: : CalpaCalpa: A Tool for Automating Selective Dynamic Compilation, Internati: A Tool for Automating Selective Dynamic Compilation, International Symposium on onal Symposium on
MicroarchitectureMicroarchitecture, pages 291, pages 291--302, 2000302, 2000

•• K. K. EbciogluEbcioglu and E.R. Altman: DAISY: Dynamic Compilation for 100% Architectuand E.R. Altman: DAISY: Dynamic Compilation for 100% Architectural Compatibility, ISCA, pages 26ral Compatibility, ISCA, pages 26--37, 199737, 1997

•• V. V. BalaBala, E. , E. DuesterwaldDuesterwald and and SanjeevSanjeev BanerjiaBanerjia: Dynamo: A Transparent Dynamic Optimization System, ACM SIGPLAN: Dynamo: A Transparent Dynamic Optimization System, ACM SIGPLAN Notices, 2000Notices, 2000

•• C. J. C. J. KrintzKrintz, D. Grove, V. , D. Grove, V. SarkarSarkar and Brad Calder: Reducing the overhead of dynamic compilation, and Brad Calder: Reducing the overhead of dynamic compilation, Software Practice and Experience, Software Practice and Experience,
volume 31, number 8, pages 717volume 31, number 8, pages 717--738, 2001738, 2001

•• M.J. Voss and R. M.J. Voss and R. EigenmannEigenmann: : ADAPT: ADAPT: AutomatedAutomated dede--coupledcoupled adaptive program transformation, in adaptive program transformation, in proceedingsproceedings of ICPP, 2000of ICPP, 2000

Literature
•• G.G. Fursin, A. Cohen, M.F.P. O'Boyle and O. Temam: A Practical MethFursin, A. Cohen, M.F.P. O'Boyle and O. Temam: A Practical Method For Quickly Evaluating Program Optimizations, in pod For Quickly Evaluating Program Optimizations, in proceedingsroceedings of of
the 1st International Conference on High Performance Embedded Arthe 1st International Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS, chitectures & Compilers (HiPEAC 2005), number 3793 in LNCS,
pages 29pages 29--46, Barcelona, Spain, November 200546, Barcelona, Spain, November 2005

•• J.LauJ.Lau, , M.ArnoldM.Arnold, , M.HindM.Hind and and B.CalderB.Calder: Online Performance Auditing: Using Hot Optimizations Without G: Online Performance Auditing: Using Hot Optimizations Without Getting Burned, in proceedings of etting Burned, in proceedings of
PLDI, 2006PLDI, 2006

•• G. Fursin, C. Miranda, S. Pop, A. Cohen and O. Temam: Practical G. Fursin, C. Miranda, S. Pop, A. Cohen and O. Temam: Practical RunRun--time Adaptation with Procedure Cloning to Enable Continuous time Adaptation with Procedure Cloning to Enable Continuous
Collective Compilation, in proceedings of the GCC DevelopersCollective Compilation, in proceedings of the GCC Developers’’ Summit, Ottawa, Canada, July 2007Summit, Ottawa, Canada, July 2007

•• C. C. LattnerLattner and V. and V. AdveAdve: : LlvmLlvm: A compilation framework for lifelong program analysis & transf: A compilation framework for lifelong program analysis & transformation, in proceedings of the 2004 ormation, in proceedings of the 2004
International Symposium on Code Generation and Optimization (CGOInternational Symposium on Code Generation and Optimization (CGO’’04), Palo Alto, California, March 200404), Palo Alto, California, March 2004

•• A. A. MonsifrotMonsifrot, F. , F. BodinBodin, and R. , and R. QuiniouQuiniou: A machine learning approach to automatic production of compile: A machine learning approach to automatic production of compiler heuristics, in proceedings of the r heuristics, in proceedings of the
International Conference on Artificial Intelligence: MethodologyInternational Conference on Artificial Intelligence: Methodology, Systems, Applications, LNCS 2443, pages 41, Systems, Applications, LNCS 2443, pages 41––50, 200250, 2002

•• M. Stephenson, S. M. Stephenson, S. AmarasingheAmarasinghe, M. Martin, and U., M. Martin, and U.--M. OM. O’’Reilly: Meta optimization: Improving compiler heuristics with maReilly: Meta optimization: Improving compiler heuristics with machine learning, in chine learning, in
proceedings of the ACM SIGPLAN Conference on Programming Languagproceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDIe Design and Implementation (PLDI’’03), pages 7703), pages 77––90, June 90, June
20032003

•• S. Long, M.F.P. OS. Long, M.F.P. O’’Boyle: Adaptive Java Boyle: Adaptive Java optimisationoptimisation using instanceusing instance--based learning, in proceedings of ICS, 2004based learning, in proceedings of ICS, 2004

•• J. Cavazos, J. Cavazos, J.E.B.MossJ.E.B.Moss, , M.F.P.OM.F.P.O’’BoyleBoyle: Hybrid Optimizations: Which Optimization Algorithm to Use? in : Hybrid Optimizations: Which Optimization Algorithm to Use? in proceedings of CC, 2006proceedings of CC, 2006

•• F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P.F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint and C.K.I. Williams: Using MaO'Boyle, J. Thomson, M. Toussaint and C.K.I. Williams: Using Machine chine
Learning to Focus Iterative Optimization. in proceedings of the Learning to Focus Iterative Optimization. in proceedings of the 4th Annual International Symposium on Code Generation and Optim4th Annual International Symposium on Code Generation and Optimization ization
(CGO), New York, NY, USA, March 2006(CGO), New York, NY, USA, March 2006

•• John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, MichaJohn Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.Oel F.P.O’’Boyle and Olivier Temam: Rapidly Selecting Good Compiler Boyle and Olivier Temam: Rapidly Selecting Good Compiler
Optimizations using Performance Counters, in proceedings of the Optimizations using Performance Counters, in proceedings of the 55th Annual International Symposium on Code Generation and th Annual International Symposium on Code Generation and
Optimization (CGO), San Jose, USA, March 2007Optimization (CGO), San Jose, USA, March 2007

•• Christophe Dubach, John Cavazos, BjChristophe Dubach, John Cavazos, Bjöörn Franke, Grigori Fursin, Michael O'Boyle and Oliver rn Franke, Grigori Fursin, Michael O'Boyle and Oliver Temam:Temam: Enabling fast compiler optimization Enabling fast compiler optimization
evaluation via codeevaluation via code--features based performance features based performance predictor, in proceedingspredictor, in proceedings of the ACM International Conference on Computing Frontiers, of the ACM International Conference on Computing Frontiers,
Ischia, Italy, May 2007Ischia, Italy, May 2007

Related Conferences
•• Conference on Programming Language Design and Implementation (Conference on Programming Language Design and Implementation (PLDIPLDI))

•• International Conference on Code Generation and Optimization (International Conference on Code Generation and Optimization (CGOCGO))

•• Architectural Support for Programming Languages and Operating SArchitectural Support for Programming Languages and Operating Systems ystems
((ASPLOSASPLOS))

•• Conference on Parallel Architectures and Compilation TechniquesConference on Parallel Architectures and Compilation Techniques ((PACTPACT))

•• International Conference on Compilers, Architecture and SynthesInternational Conference on Compilers, Architecture and Synthesis for is for
Embedded Systems (Embedded Systems (CASESCASES))

•• Symposium on Principles of Programming Languages (Symposium on Principles of Programming Languages (PoPLPoPL))

•• Principles and Practice of Parallel Computing (Principles and Practice of Parallel Computing (PPoPPPPoPP))

•• International Symposium on International Symposium on MicroarchitectureMicroarchitecture ((MICROMICRO))

•• International Symposium on Computer Architecture (International Symposium on Computer Architecture (ISCAISCA))

•• Symposium on HighSymposium on High--Performance Computer Architecture (Performance Computer Architecture (HPCAHPCA))

•• Workshop on Statistical and Machine learning approaches to Workshop on Statistical and Machine learning approaches to ARchitecturesARchitectures
and and compilaTioncompilaTion ((SMARTSMART))

Related Journals

•• ACM Transaction on Architecture and Code OptimizationACM Transaction on Architecture and Code Optimization

•• IEEE Transaction on ComputersIEEE Transaction on Computers

•• ACM Transactions on Computer SystemsACM Transactions on Computer Systems

•• ACM Transactions on Programming Languages and SystemsACM Transactions on Programming Languages and Systems

•• IEEE Transaction on Parallel and Distributed SystemsIEEE Transaction on Parallel and Distributed Systems

•• IEEE MicroIEEE Micro

Miscellaneous

MachMachiine ne LLearning for earning for EEmbedded mbedded PPrroogramgrams s
OOptimisation ptimisation (MILEPOST)(MILEPOST)

http://http://www.milepost.euwww.milepost.eu

Network of Excellence on High Performance
Embedded Architectures and Compilers

(HiPEAC)
http://www.hipeac.net

Thanks

Contact email:Contact email:
grigori.fursin@inria.frgrigori.fursin@inria.fr

More information about research projects and software:More information about research projects and software:
http://http://fursin.netfursin.net/research/research

Lecture and publications onLecture and publications on--line:line:
http://http://fursin.net/research_teaching.htmlfursin.net/research_teaching.html

Thanks to Prof. Michael OThanks to Prof. Michael O’’Boyle from the University of Edinburgh for Boyle from the University of Edinburgh for
providing some slides from his course on iterative feedbackproviding some slides from his course on iterative feedback--directed directed

compilation (2005)compilation (2005)

