Adaptive and feedback
driven compilation and
optimization

Grigori Fursin

Alchemy group, INRIA Futurs, France

|||||||||



My background

 Ph.D. degree from the University of Edinburgh, UK (1999 - 2004)
Program iterative optimizations and performance prediction

e Research scientist at INRIA Futurs, France (2004 ...)

Iterative feedback directed compilation
Run-time adaptation and optimization

Machine learning

Architecture design space exploration

e Collaborations:

IBM, NXP, STMicro, ARC, ARM, CAPS Enterprise
University of Edinburgh

Universitat Politechinca de Catalunya (UPC)
University of Illinois at Urbana-Champaign (UIUC)



Course overview

Assume that all understand basics of computer architecture and compilation
process.

Focus on compilers that map user program to machine code

Explain general major compilation problems instead of focusing on individual
components

Describe current major research areas for compilation and optimization

Motivation

Background

Feedback directed compilation and optimization

Dynamic compilation and optimization

Machine learning and future directions



Are compilers important?



Current innovations in science and industry demand ever-increasing computing
resources while placing strict requirements on system performance, power
consumption, size, response, reliability, portability and design time.



Motivation

Current innovations in science and industry demand ever-increasing computing
resources while placing strict requirements on system performance, power
consumption, size, response, reliability, portability and design time.

High-performance computing systems rapidly evolve toward
complex heterogeneous multi-core systems

dramatically increased optimization time



Current innovations in science and industry demand ever-increasing computing
resources while placing strict requirements on system performance, power
consumption, size, response, reliability, portability and design time.

High-performance computing systems rapidly evolve toward
complex heterogeneous multi-core systems

dramatically increased optimization time

Optimizing compilers play a key role in producing executable codes quickly
and automatically while satisfying all the above requirements for a broad
range of programs and architectures.
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What are the challenges?



IS It easy?
What are the challenges?

Before answering these questions we need to look at the basics of the
current compilers



Compiler background

 Compilers translate user programs to machine code

» Translation must be correct

* Needed to hide machine complexity

« Compilers need to optimize code to satisfy various requirements

« Compilers automatically translate. Can we automate compiler
construction?

« Compilers generating compilers exits - GCC, CoSy

e Automatic construction of compiler optimization is very challenging



Compiler background

Some current popular static optimizing compilers for Linux:

GCC (GNU Compiler Collection)
http://gcc.gnu.org
Open64

http://www.open64.net

Intel Compilers

http://www.intel.com/cd/software/products/asmo-na/
eng/compilers/284264.htm

PathScale Compilers

http://www.pathscale.com



Compiler structure

« Compiler structure changed little since 1950s: consists of a linear
seguence of passes

 Lexical Analysis: Finds and verifies basic syntactic items, lexems,
tokens using finite state automata

» Syntax Analysis: Checks tokens following a grammar and builds an
Abstract Syntax Tree (AST)

« Semantic Analysis: Checks that all names are consistently used and
builds a symbol table

e Code optimization and generation: Optimize code using different
Intermediate formats (IR) and generate machine instructions for a
specific architecture while keeping the meaning of the program



Compiler structure
Back |machine
End code

* Front End translates “strings of characters” into a structured High Level
Abstract Syntax Tree (AST)

source

Middle
End

Restruct
code

e Restructurer and Middle End performs machine independent
optimizations including “source-to-source transformations” and outputs a
Lower Level Intermediate Representation (IR)

e Can be several IRs to simplify program anlsysis, optimizations and
code generation

 Many choices for IR (affect form and strength of program analysis
and optimizations)

« Back End generally performs machine code generation including
Instruction scheduling and register allocation



Optimizer structure

Optimization
pass,

Optimization
pass,

Optimization
pass,

Many optimization passes (inlining; dead code elimination; constant
propagation; loop transformations including loop tiling, interchange, fusion-
fision, vectorization, unrolling; automatic parallelization, etc) with the fixed
linear order

Optimization passes can be often turned on and off using compiler
command line flags

Passes are generally applied to either the whole program (Inter-Procedural
Optimizations) or at a function (procedure) level.

Transformations within passes are often applied on a loop or basic-block
level with the fixed linear order and can be parametric

Some transformations can be selected by compiler command line flags but
optimization heuristic is often hidden from the user



Optimizer structure

IR Optimization Optimization Optimization | IR
pass,; pass, passy

Is this working well?

(DEMO,)



Optimizer structure

Optimization
pass,

Optimization
pass,

Optimization
pass,

Matmul benchmark and GCC 4.2.x compiler:

1) gcc -O3 -funroll-loops matmul.c [matrix size 160x160]

Using funroll-loops over default -O3 optimization level gives around
15% improvement in execution time on x86 architecture
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15% improvement in execution time on x86 architecture

Wow! Found good compiler flag! Let's use it all the time!



Optimizer structure

Optimization
pass,

Optimization
pass,

Optimization
pass,

Matmul benchmark and GCC 4.2.x compiler:

1) gcc -O3 -funroll-loops matmul.c [matrix size 160x160]

Using funroll-loops over default -O3 optimization level gives around
15% improvement in execution time on x86 architecture

Wow! Found good compiler flag! Let's use it all the time!

2) gcc -03 -funroll-loops matmul.c [matrix size 3x3]

Using funroll-loops over default -O3 optimization level degrades
performance by about 10%

So, selecting this flag is not always good!



Room for improvement?

This problem is not new (40+ years)

1.8
1.6
1.4+
1.2+

0.8+
0.6
0.4+
0.2+

execution time speedup
H
|

\\\|\\

(Optimizing matrix multiply code)



Challenges

 Optimizer has to exploit all architectural features

- Instruction and thread level parallelism

- Effective management of memory hierarchy

(registers, caches, memaory, disk)
« Optimization at many levels: source, internal formats, assembler
e Optimization at many scopes:
(whole program, function/procedure, loop, basic block)

e Which optimizations to use?
« What is the best order of optimizations?
 How to select right transformation parameters?

 What if transformation parameters depend on run-time information?



Challenges

Machine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile and
machine specific



Challenges

Machine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile and
machine specific

Example: Common sub-expression elimination

Aim: prevent redundant recalculation of terms

a=b+c+f t=b+cC
d=b+c+e a=t+f
d=t+e

Seems always like a good idea: 4 adds vs. 3



Challenges

Machine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile and
machine specific

Example: Common sub-expression elimination

Aim: prevent redundant recalculation of terms

a=b+c+f t=b+cC
d=b+c+e a=t+f
d=t+e

Seems always like a good idea: 4 adds vs. 3

However: potentially additional variable - pressure on register allocation!



Challenges

Machine dependent optimizations vs. independent optimizations

« Rapidly evolving architectural features strongly determine the best code
sequence

« Rarely are all instructions of equal cost. Even if they have the same
latency, not all function units support all functions.

 The more complex the hardware, the harder it is to determine the best
code sequence

 Mixed multimedia instructions of different ISA for heterogeneous
systems - which version to select?



Challenges

Classic optimization: Static analysis and transformation

o Statically (at compile time) analyze the program and transform it based
on architectural features (such as ISA, memory hierarchy, etc) and
requirements (such as reducing execution time or program size)

Example of stride-1 access. Array C has row-major layout. Makes
sense to traverse data row-wise.

for (1 = 0; 1I<n; 1++)
for (J = 0; j<n; j++)
ala]lv] + bLi];
This code traverses the array column-wise

Does not exploit spatial locality. Can have excessive cache misses.



Challenges

Poor stride

for (i =0; i<n; i++)

for (j =0; j<n; j++) ]
a[j][i] + b[i];

» Neighboring fetched elements not referenced until much later

« Cache line probably evicted by then



Challenges

Classic optimization: Static analysis and transformation

o Static analysis suggests that the innermost iterator should be in
outermost subscript - should be transformed!

« Transform - apply code restructuring to achieve this - loop interchange
for (J = 0; j<n; j++)
for (1 = 0; 1I<n; 1++)
app1L1] + b[i];
 This code now traverses the array row-wise!

e Linear analysis and transformations can bring dramatic performance
Improvements



Challenges

Improved stride
1

for ) =0; j<n; j++)

for (i = 0; i<n; i++) ]
a[j][i] + b[i];

* Neighboring fetched elements referenced immediately

« Cache line unlikely to be evicted



Challenges

Classic optimization: Static analysis and transformation

 However does not consider other costs. i.e. b[i] is no longer invariant -
temporal locality lost

« Uses idealized model of machine. No account of memory hierarchy,
cache replacement policy etc.

e |If any of this were to change, no way of changing the compiler

 Fundamentally each analysis has a small focused scope and hardware
Issue to reduce complexity.

* No theory/practice to integrate views.



Challenges

Some other transformations: Loop Unrolling

original loop: unrolled loop (u - unroll factor):
do1 =1, n do1 =1, n, u—
S1(1) S1(i)
S2(1) S2(i)
end do S1(i+l1)
S2(i1+l) >>—Ioop body replicated
- u times
S1(i+u-1)
S2(i+u-1)
end do _/
do jJ =1, n
S1()) processing all
S2(3) remaining
" elements
end do

Which unrolling factor to choose?



Challenges

Some other transformations: Loop Tiling

original loop nest: transformed loop nest:
do IT =1, N, SS
do JT = 1, N, SS

do I =1, N do 1 = IT, MIN(N, IT+SS-1)
do J =1, N do J = JT, MIN(N, JT+SS-1)
A(1,3) = A(1,d) + B(1,d) A(1,) = A(1,d) + B(1,d)
c(1,3) = A(1-1,3) * 2 c(1,d) = A(1-1,3) * 2
end do end do
end do end do
end do
end do
iteration space iteration space
of the original loop: of the transformed loop:
—_—

—

1 l




Current state-of-the-art compilers and optimizers often fail to
deliver best performance on modern systems due to
fundamental reason of complexity and undecidability

* lack of run-time information - impossible to know the best code sequence at
compile-time

 simplistic hardware models for rapidly evolving processor architecture while its
behavior with out-of-order execution and caches is non-deterministic

* long chain of optimization passes - difficult to predict best order, inevitably loss
of information along the path

» fixed black-box optimization heuristics and inability to fine-tune applications

* inability to reuse optimization knowledge among different programs and
architectures

* inability to adapt to varying program and system behavior at run-time



Current compiler and optimization technologies should be revisited
to keep pace with rapidly evolving hardware

Need static compilers that can continuously and automatically learn
how to optimize programs, and have an ability to adapt at run-time
for different behavior and constraints



Formalization of optimization

Compilation as Optimization

 Define “formal” optimization problem: minimize objective function over
a space of options.

» Objective function is execution time, though code size, power and
other constraints can be important.

» Optimization search space: all possible equivalent programs
 Objective function is undecidable in general

e Optimization space: infinite



Formalization of optimization

Intractability

» Solving an undecidable problem over an infinite space is clearly not
feasible so simplification is necessary

 Traditionally have broken the problem into sub-problems based on certain
assumptions

» Solve the problem by looking at each in isolation:
« Code generation - determining the best code for an expression is NP
e Scheduling - determining the best order of instruction is NP

» Register allocation determining the best use of registers to minimize
memory traffic is NP



Formalization of optimization

How to overcome?

Two main problems:

« Complexity of processor architecture, undecidability of program
Both problems arise from trying to optimize statically at compile time
e Have to guess a tractable model, have to guess about data input

* Pros and Cons to all approaches. Depends highly on application
scenario



Formalization of optimization

Taxonomy:

2 main causes: program undecidability and processor complexity
 Variables (what): Program (P), Data (D) and Processor (proc)
 Variables (when): design, compile or runtime

» 2 sides of adaption: portability and specialization

e Examine all techniques in this light



Formalization of optimization

Taxonomy:

* Program (P), Data (D) and Processor (proc)
e time = f(T(P),D,proc), Pick Transformation T to minimize f

« Standard compilation (SC) typically has a hardwired model of proc
built in

e SC also has an ad hoc view of typical programs (often biased by
SPEC!) with a compiler strategy that is biased to them

« SC applies the strategy at compile time making no reference to data

e Data in no way affects SC behavior - just guess a “typical” input set



Formalization of optimization

Taxonomy:
Design time:

 Build a compiler: encode compiler optimization strategy. Typically a time
consuming manual process. Takes many person-years. Particular to one
processor, data and programs unknown

Compile time:

« Examine program and apply transformations based on design time
encoded strategy. Can take a reasonable amount of time. Must be less than
accumulated runtime throughout lifetime of program

e Processor assumed, program known, data unknown

Run-time:

» Most knowledge about application available: processor, program and data
L east amount of time available to do anything about it!

 Typically compilers do nothing - leave to independent runtime system/OS



Formalization of optimization

Taxonomy: Adaptation = Portability + Specialization
Compiler technology not normally discussed in this manner.

Appears an infrastructure rather than optimization issue.

Portability:

* Ability to MODIFY behavior to changing circumstances, changing data,
program, processor

Specialization:

 Ability to EXPLOIT fixed, known features: processor, program and data

Natural tension between the two: flexibility vs rigidity



Formalization of optimization

Taxonomy: current static compilers

* What and when to port/specialize:
processor, program, data, design, compile, runtime

» Currently: specialize to processor at design time
BUT cannot easily port to a new processor

» Portable across a wide range of programs and data
at compile and runtime BUT

* Do not specialize to runtime data or program/processor interaction

 Very little exploitation of dynamic runtime knowledge/
Adaption to changing processor or data not considered



Formalization of optimization

What are the ways to solve this problems?



Feedback directed compilation

 Profile feedback directed compilation
 Application tuning

e [terative compilation

o Efficient searching

e Conclusion



Feedback directed compilation

Feedback directed (profile directed compilation)
* Directly addresses problem of compile time unknown data
» Key (simple) idea: run program once and collect some useful information
 Use this runtime information to improve program performance
* In effect move the first runtime info into the compile time phase

» Makes sense if gathering the profile data is cheap and user willing to pay
for 2 compiles. Can still use after first compile.

 Allows specialization to run-time data — what are pros and cons?



Feedback directed compilation

Off-line vs on-line compilation
* Profile directed compilation is one example of off-line optimization
e Information is gathered and utilized before the “production” run

 On-line schemes gather information and dynamically change program
as it runs.

o Off-line schemes work on basis that costs incurred at compile-time are
outweighed by improved runtime. Can be more aggressive than on-line
schemes.



Feedback directed compilation

Compiler

Traditional compilation model



Feedback directed compilation

Data can change from run to run. Executable is still correct.

>

Profile information as an additional output




Feedback directed compilation

Brief history

 The use of profiling to aid program performance has been around for a
while

« prof, gprof (1982). A tool to help developers to understand their code.
Instrumentation at compile time and then sampled at runtime

 Hardware analysis (1980s). Monitor program behavior and adapt.
Branch prediction - pipelines means need to guess which branch to take

 Edge/node based profile information for compilers 1990s

« Path based profiling Larus + Ball late 1990s, Smith 2000



Feedback directed compilation

PDC for classic optimization

Record frequently taken edges of program control-flow graph

IMPACT compiler in 1990s good example of this but also used eatrlier -
Josh Fisher et al, Multiflow.

 Use weight information of edges and paths in graph to restructure
control-flow graph to enable greater optimization

 Main idea: merge frequently executed basic blocks increasing sizes of
basic block if possible (superblock/hyperblock) formation. Fix up rest of
code.

 Allows improved scheduling of instructions and more aggressive scalar
optimizations at expense of code size



Feedback directed compilation

PDC example 1 |

A
100
90

10

e Sequence of basic blocks

* Frequency of execution on - .
0
edges and nodes 90 10

 Primarily ABEF | 90

« Other entry/exit control-flow 5

prevents merging » 10

v

e Super-block -frequently I F L
executed path L]

 Merge and tidy-up 99

e Optimize larger unit



Feedback directed compilation

PDC example 1

A 10
100
» Selecting the trace 5
 Start at most frequent block . .
90 10
 Add blocks on most frequent
successors - -

D E
 Repeat on other nodes 0 90 "
« Done in both control-flow 0 70

directions | F
100 v
Do on remaining nodes 00 \




Feedback directed compilation

PDC example 1 -*
| A 10
. . . 100
 Tail Duplication 50
* Duplicate first block with B 0 C
20 10
external entry edges
| 90 |
 But not the head E 5
00 0 10
 Redirect incoming edges o
| 0
* Duplicate outgoing EG )
° - | 10 B
Repeat o \

 Much code duplication



Feedback directed compilation

PDC example 2

a=b+c
d=Db+c¢ d=a+x
E“QH o
z=d+1

Common b + ¢ on frequently taken path



Feedback directed compilation

PDC example 2

a=b+c
9] —
d="b+c d=at+x
9. 1
z=d+1 z=d+1

Replicate first node on main path with external incoming edge
Now separate paths



Feedback directed compilation

PDC example 2

a=b+c
9] 1

d=a d=a+x
9 1

z=a+ 1 z=d+1

Applying CSE eliminates redundant computation at cost of additional code



Feedback directed compilation

Edge vs Path profiling

* Qverlapping paths cannot be distinguished by edge profiling
« Path profiling allows much greater accuracy

 However, combinatorial explosion in paths. Cycles in graphs leads to
potentially unbounded number

e In practice Edge/node profiling only captures around 40-50

« Larus and Ball '99 developed an efficient path profiler that avoids these
problems. In practice the benefit achieved was small though

 Mike Smith at Harvard extended this idea for more targeted optimization



Feedback directed compilation

Some results when using PDC (Fursin’2002)
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Feedback directed compilation

Some results when using PDC (Fursin’2002)
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Feedback directed compilation

Beyond PDC

e Although useful, the performance gains are modest

« Challenge of undecidability and processor behavior not addressed.
 What happens if data changes on the second run?

« Really focuses on persistent control-flow behavior

« All other information i.e. run-time values, memory locations accessed are
ignored

« Can we get more out of knowing data and its impact on program
behavior?



Feedback directed compilation

Evolution of PDC

Compiler

PDC with multiple (iterative) compiles



Feedback directed compilation

Automatic library tuning

« A different off-line approach that exploits knowledge gained by running
the program in the optimization process

 There is a (growing) family of application specific approaches to library
tuning

« Rather than recording path information for later optimization — just record
execution time

 Try many different versions of the program and select the best for that
machine. Key issue is how different programs are generated.

* In effect move run-time into design time.

Main examples ATLAS, PHIPAC and FFTW



Feedback directed compilation

ATLAS

 An automatic method of tuning linear algebraic libraries for differing
Processors

e [t is domain specific and only focuses on tuning the core GEMM routine
for a specific processor.

 Takes an ad-hoc approach - generate different versions and measure
them against anything available - including vendor supplied libraries and
pick the best

o |t tries different software pipelining and register tiling parameters and
enumerates them all, selecting the best. The space of options is derived
from explicit knowledge of the application behavior.



Feedback directed compilation

ATLAS

—

Master Search

| |
| Mult Imp Source Gen
Search Search
| | | |
Multiple Tester/ Source
Tmplementatiog Timer (renerator

l
__________________________________________________ L ANSIC e
Compiler

Aszembler/Tinker
|

Timer
Executable

Broken down into application specific, generic and platform specific sections



Feedback directed compilation

ATLAS

« Regularly outperforms the best existing approaches. Now the standard
approach to library generation.

« Adaption?: Very portable - works on any platform AND specializes to the
particular processor

 BUT specialized to a particular application -no portability across
programs no exploitation of runtime data as static control-flow

 PHIPAC tries to exploit data patterns in sparse structures by trying
simple optimizations off-line and applying them at run-time when data
encountered.

 However - domain specific, not generalizable or widely automatable



Feedback directed compilation

Iterative compilation

* [terative compilation started in 1997 with the OCEANS project

e Similar in spirit to automatic tuning except the space of tuning is in fact
the entire program transformation space

 In asense itis direct implementation of the formal compiler optimization
problem. Find transformation T that minimizes cost.

e Main ideas was to combine high and low level optimization and use cost
models to guide selection

« Highly ambitious but immature infrastructure prevented much progress



Feedback directed compilation

T T
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Feedback directed compilation

matrix multiply, N=400, UltraSparc, exhaustive search
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Minimum at: Unroll=3, Tile size=57

Near minimum: 2.6%, original 4.99 sec, minimum 0.56 sec



Feedback directed compilation

matrix multiply, N=400, UltraSparc, random search

180
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Mumbsr of Evaluations

50 steps: within 0.0%. Initially 2.65 times slower than minimum



Feedback directed compilation

matrix multiply, N=512, Alpha, exhaustive search

Minimum at: Unroll=4, Tile size=85

Near minimum: 0.9%, original 31.72 sec, minimum 3.34 sec,
maximum 81.40 !



Feedback directed compilation

matrix multiply, N=512, Alpha, random search
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50 steps: within 21.9%. Originally 5.25 times slower than minimum



Feedback directed compilation

matrix multiply, N=400, Pentium Pro, exhaustive search

T

|

Minimum at: Unroll=19, Tile size=57

Near minimum: 4.3%, original 4.88 sec, minimum 1.43 sec



Feedback directed compilation

matrix multiply, N=400, Pentium Pro, random search

300

260 T

200
= 150}

100

1 (| 1 1 1 1 1
a 20 40 &0 80 100 120 140 150 180 200
Mumbser of Evaluations

50 steps: within 10.5%



Feedback directed compilation

matrix multiply, N=512, R10000, exhaustive search
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Feedback directed compilation

matrix multiply, N=512, R10000, random search

|
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a 20 40 &0 BO 100 120 140 160 180 200
Mumber of Evaluations

50 steps: within 4.9%



Feedback directed compilation

Phase order

 Oceans work looked at parameterized high level search spaces (tiling,
unrolling). Restricted by compilers and only small kernel exploration

* Impressive search results due to “tuned” heuristic and small spaces. In
practice depends on space shape

« Keith Cooper et al '99 onwards also looked at iterative compilation
 Cooper’'s search space was the orderings of phases within a compiler

 Lower level and not tied to any language. More generic and explores the
age-old phase ordering problem more directly



Feedback directed compilation

Phase Order
Frontend . Back End

\ // 7 ) code
/ - ™ Obiectiv

Steermg Jecuve
\ - 7 Function

» Cooper has found improvements up to 25% over default sequences
 Examined search heuristics that find good points quickly

 However, evaluation approach is strange and results don't seem
portable



Feedback directed compilation

DSP systems

» [terative compilation proved to be useful for embedded applications or
libraries.

o [t is difficult to improve on embedded compilers and hard to get access
to internals. HLT is attractive but pointers cause problems

* Franke et al 2005 overcomes this with a pointer recovery + SUIF based
transformation explorer. Uses 2 search strategies



Feedback directed compilation

DSP framework
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Using this framework to exhaustively explore and characterize the
optimization space



Feedback directed compilation

Franke et al

* Looks through space of 808 transformations on 3 platforms for UTDSP
benchmark suite. Not feasible to do exhaustively. Really stresses SUIF

« 2 algorithms. Trade-off between coverage and focus. Random search -
select a random length up to 80. Then randomly select any
transformation for each location. Lots of redundant transformations.

 PBIL: Population based inference learning. Modify probability of
selecting transformation based on previous trials. Only examine effective
transformations

* Average 41% reduction. PBIL finds the best in majority of cases but
Random best has higher speed up.



Feedback directed compilation

Frequency per program
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Feedback directed compilation

Results

e Tried 500 runs. On UTDSP benchmark: TriMedia average speedup of
1.43 and 1.73 for TigerSharc

« Shows that HLT can give a big win compared to backend optimizations
« Also compared GCC and ICC on embedded Celeron

e Original: ICC 1.22 faster than GCC

e GCC + IC: speedup of 1.54 - better than ICC

« BUTICC + IC: speedup of 2.14



Feedback directed compilation

Interactive Compilation Interface (Fursin et al’2005)

» Instead of developing new compiler or transformations tools, modify current
popular (non-research) rigid compilers into simpler transparent open transformation
toolsets with externally tunable optimization heuristics through a standardized
Interactive Compilation Interface (ICl)

= Control only decision process at global or local level and avoid revealing all
intermediate compiler representation to allow further transparent compiler evolution

= Narrow down optimization space by suggesting only legal transformations
= Enable iterative recompilation algorithm to apply sequences of transformations

» Treat current optimization heuristic as a black-box and progressively adapt it to a
given program and given architecture

= Allow life-long, whole-program optimization research with optimization knowledge
reuse



Feedback directed compilation

Interactive Compilation Interface
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Feedback directed compilation

Interactive Compilation Interface
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Feedback directed compilation

Interactive Compilation Interface

GCC Internals ICController
-------------------- XML File Infrastructure <dynamic linked>
A <shared library>
(ast, cfg, cf, etc.) . || |
. XML-RPC Client
;’ 7 Repository
8 b .
ke IC Controller |&~
o |a»| <sharedlib> |<______| HighLevel Controller _| XML-RPC Server |
= <dyn. linked= (java, python, etc))
O Remote Controller

(C++,java,perl,...)

moves toward simpler modular compiler



Feedback directed compilation

Implemented in GCC :: External
GCC Internals ICInterface. h ICController h
R 7 Tl A
|ICinterface.c |- : |CController.c

int get_interface_version (void);

void clean_scope (void);

bool scope to function (char *func_name);

bool scope to loop (int loop);

void *get_feature (char *feature _name);

char **get_available features_ for_type (int type);
bool run_pass (char *pass_name);

bool unroll_loop( int factor, enum UNROLL_TYPE type);
bool loop_interchange (int loop_number);

bool loop_fusion (int nr_of_consecutive loops);
bool function_inline (int call_id);



Feedback directed compilation

Interactive Compilation Interface

#include "ic-controller.h"

#include "ic-interface.h"

bool start (char *params)

{
Int *version = get_interface_version ();
bool ret = (*version > 100) ? true : false;
free(version);
return ret;

by
void stop (void)

{

/™ nothing to be done; */

}

void controller (void)
{
char **passes = get feature ("global_passes");
char **functions = get_feature ("functions");
char **tmp, **tmpl;
// |PA passes
for (tmp = passes; *tmp != NULL; tmp++)
{
char *pass_name = *tmp;
// run_pass should never return false, since we are performing same pass
// order as GCC.
run_pass(pass_name);
free(pass_name);

}




Feedback directed compilation
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Feedback directed compilation

Interactive Continuous Compilation

[ applcation } Development Websites:
v http://gcc-ici.sourceforge.net
“T-sou tee-to-sourge -~~~ -
_[,_‘-—‘—r—a”Sfefma“"”& ~~~~~ ] http://pathscale-

Ici.sourceforge.net

lterative Interactive http://open64-ici.sourceforge.net

Compiler

http://gcc-ccc.sourceforge.net

Program
Transformation
Database

execution
Iterative Optimizations/
Machine Learning

Y
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Feedback directed compilation

Evaluating iterative compilation with multiple datasets

MiDataSets for MiBench — 20 per program
Iterative search for best compiler flags using PathScale compiler suite

Grigori Fursin, John Cavazos, Michael O'Boyle and Olivier Temam. MiDataSets: Creating
The Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of
the International Conference on High Performance Embedded Architectures & Compilers

(HIPEAC 2007), Ghent, Belgium, January 2007

Development website: http://midatasets.sourceforge.net



Feedback directed compilation

Speedup over baseline
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Speedup over baseline
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Feedback directed compilation
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200



Feedback directed compilation
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Feedback directed compilation

Search speed
 The main problem is optimization space size and speed to solution

 Many use a cut down transformation space - but this just imposes ad
hoc non portable bias

 Need to have large interesting transformation space. Orthogonal - no
repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very
systematic but doesn’t cover everything

» Build search techniques to find good points quickly



Feedback directed compilation

Using models

 Obvious approach is to use cheap static modes to help reduce number
of runs

« Difficulty is to balance savings gained by model against hardwiring
strategy

 Wolfe and Mayadan generate many versions of a program and check
against an internal cache models rather than generate the best by
construction

o Although more successful doesn’'t address problem of processor
complexity. No real feedback (Pugh A* search ). Cannot adapt

« Knijnenburg et al PACT 2000 use simple cache models as filters. Used
to eliminate bad options rather than as substitute for feedback. Obtained
significant speed up



Feedback directed compilation

Search space

 Understanding the shape or structure of search space is vital to
determining good ways to search it

* Unfortunately little agreement
* Vuduc '99 shows that minima dramatically vary across processor
« Cooper shows that reasonable minima are very near any given point

 However, our recent work shows that it strongly depends on scenario.
Rich space on a TriMedia while golf green on the TI. Should use
structure to aid search

* Vuduc uses distribution of good points as stopping criteria

* Fursin use upper bound of performance as guide.



Feedback directed compilation

Optimization spaces (set of all possible program transformations) are large,
non-linear with many local minima

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
i search space = 2000

swim, 3 transformations,
search space = 10°2

—

Recent technique - iterative compilation:
learn program behavior across executions

High potential (O’'Boyle, Cooper), but:

- slow

- the same dataset is used

- No run-time adaptation

- N0 optimization knowledge reuse

Solving these problems is non-trivial



Feedback directed compilation

Next will focus on

dynamic compilation/optimization approaches to
adapt to different programs behavior at run-time
and machine learning to speed up iterative
search...
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Dynamic techniques

« All today's techniques focus on delaying some or all of the optimizations to
runtime

 This has the benefit of knowing the exact runtime control-flow, hotspots,
data values, memory locations and hence complete program knowledge

e It thus largely eliminates many of the undecidable issues of compile-time
optimization by delaying until runtime

 However, the cost of analysis/optimization is now crucial as it forms a
runtime overhead. All techniques characterized by trying to exploit runtime
knowledge with minimal cost



Background

» Delaying compiler operations until runtime has been used for many years
e Interpreters translates and execute at runtime

e Languages developed in the 60s ie Algol 68 allowed dynamic memory
allocation relying on language specific runtime system to mange memory

* Lisp more fundamentally has runtime type checking of objects

« Smalltalk in the 80s deferred compilation to runtime to reduce the amount
of compilation otherwise required in the 00 setting

« Java applications are compiled into bytecode and to run on Java Virtual
Machines (JVM) thus making them portable across architectures

« NET applications (mainly for Windows) similarly execute in a run-time
environment called Common Language Environment (CLR)



Runtime specialization

* For many, runtime optimization is “adaptive optimization”

 Although wide range of techniques, all are based around runtime
specialization

« Constant propagation is a simple example
e Specializing an interpreter with respect to a program gives a compiler
« Can we specialize at runtime to gain benefit with minimal overhead?

Statically inserted selection code vs parameterized code vs runtime
generation



Different techniques

Static code selection Parameterized Code generation

IF (N<M) THEN
IF (N<M) THEN

DO I =1,N
DO J =1,M ul =1
U2 = M
ENDDO ELSE
ENDDO o1 =1
FLSE U2 = N %i?_ne?tl(fp,N,M)
DO J =1,M ENDIE 28
DO T =11 DO I1 =1,U1
DO I2= 1,U2
ENDDO o
ENDDO ENDDO
ENDDO

ENDIF



DyC

* One of the best known dynamic program specializations techniques based
on dynamic code generation

* The user annotates the program defining where there may be opportunities
for runtime specialization. Marks variables and memory locations that are
static within a particular scope

e The system generates code that checks the annotated values at runtime
and regenerates code on the fly

e By using annotation, the system avoids over-checking and hence runtime
overhead. However, this is at the cost of additional user overhead
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DyC results

« Asymptotic speedup and a range programs varies from 1.05 to 4.6

» Strongly depends on percentage of time spent in the dynamically compiled
region. Varies from 9.9 to 100%

» Low overhead from 13 cycles to 823 cycles per instruction generated

 However relies on user intervention which may not be realistic in large
applications

 Relies on user correctly annotating the code



Calpa for DyC

 Calpa is a system aimed at automatically identifying opportunities for
specialization without user intervention

* It analyses the program for potential opportunities and determines the
possible cost vs the potential benefit

» For example if a variable is multiplied by another variable which is known to
be constant in a particular scope, then if this is equal to 0 or 1 then cheaper
code maybe generated

o If this is inside a deep loop then a quick test for 0 or 1 outside the loop will
be profitable



Calpa for DyC
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Calpa for DyC

 Instruments code and sees how often variables change value. Given this
data determined the cost and benefit for a region of code

 Number of different variants, cost of generating code, cache lookup. Main
benefit determined by estimating new critical path

« Explores all specialization up to a threshold. Widely different overheads 2
seconds to 8 hours. In two cases improves - from 6.6% to 22.6%

« Calpa and DyC utilize selective dynamic code generation. Now look at fully
dynamic schemes



Dynamic binary translation

* The key idea is to take one ISA binary and translate it into another ISA
binary at runtime.

e In fact this happens inside Intel processors where x86 is unpacked and
translated into an internal RISC opcode which is then scheduled. The
TransMeta Crusoe processor does the same. Same with IBM legacy ISAs.

 Why don't we do this statically? Many reasons!

e The source ISA is legacy but the processor internal ISA changes. It is
Impossible to determine statically what is the program. It is not legal to store
a translation. It can be applied to a local ISA for long term optimization



DAISY

* One of the best known schemes came out of IBM headed by Kemal
Ebcioglu

« Aimed at translating PowerPC binaries to the IBM VLIW machine

 |dea was to have a simple powerful in-order machine with a software layer
handling complexities of PowerPC ISA

e Dynamic translation opens up opportunities for dynamic optimization.

» Concerned for industrial strength usage. Exceptions, self-modifying code
etc...



DAISY

At runtime, program path and data known. But need a low overhead
scheme to make worthwhile

« Specialization happens naturally as we know runtime value of variables
« Can bias code generation to check for profitable cases
* DAISY uses a code cache of recently translated code segment

» Automatic superblock formation and scheduling



DAISY structure

DAISY ROM Translations .
. = Icache Hierarchy i
Boot code VMM Code
VMM Code - DAISY
____________________________ —|VMMData [T
| processor
PowerPC :
PowerPC M L = Dcache Hierarchy| @
Root ROM HVICTHOLY |

_____________________

 Power PC code runs without modification
e DAISY specific additions separated by dotted line

e Initially interpret PowerPC instructions and then compile after hitting
threshold

*Then schedule and save instruction in cache (2-4k). Untaken branches
are translated as (unused) calls to the binary translator



DAISY example

» Here the group is expanded
to contain two conditionals

* Path A is encountered and
translated

EXIT #1
call translator

gota TRT EXIT #2
PATH A call translator



DAISY example

 When Path B is encountered
for the first time

e Translator is called

EXIT #1
\ Tx\ call translator
goto TR CEXIT #2
call translator
PATHB



DAISY example

» Code in cache is now DAISY
updated

» Paths A and B require no
further translation

» One untranslated path
remaining EXIT #1

call translator
 Only translate and store code goto TR1 goto TR2

If needed



DYNAMO

e Similar to DAISY though focuses on binary to binary optimizations on the
same ISA. One of the claims is that it allows compilation with -01 but
overtime provides -03 performance.

e Catches dynamic cross module optimization opportunities missed by the
static compiler. Code layout optimization allowing improved scheduling due
to bigger segments. Branch alignment and partial procedural inlining form
part of the optimizations

« Aimed as way of improving performance from a shipped binary overtime

« Unlike DAISY, have to use existing hardware - no additional fragment
cache available



DYNAMO

« Initially interprets code. This is very fast as the code is native. When a
branch is encountered check if already translated

* If it has been translated jump and context switch to the fragment cache
code and execute. Otherwise if hot translate and put in cache

» Over time the working set forms in the cache and Dynamo overhead
reduces - less than 1.5

* Cheap profiling, predictability

e Linear code structure in cache makes optimization cheap. Standard
redundancy elimination applied



Just in Time Compilation

» Key idea: lazy compilation. Defer compiling a section of high level code
until it is encountered during program execution. For OO programs it has
been shown that this greatly reduces the amount of code to compile.
Krintz'00 shows 14 to 26% reduction in total time.

» Greater knowledge of runtime context allowing optimization to be focused
on important parts of program

 However is Just in time really Just too late? Why wait until execution time
to compile when the code may be lying around on disk for months
beforehand

e Main reason - dynamic linking of code especially in Java. This restricts the
optimizations available



* Most Java compilers initially interpret, then compile and finally optimize
based on frequency of use

* Normally done on a per method basis

« Jikes instead directly compiles code when encountered to native machine
code

« Well known robust research compiler freely available

 Much work centred around what level of optimization to apply and when to
apply it



Jikes structure

Executing

Code I |
Machine
| . Code
Unresolyed o
Refelences Cmnpllan;a 1

Adaptive Resolution o _ ‘Compilers
Optimisation Dynamic | Compile | Base. Opt
System Linker  —ass Init

ClassLoad|Request

i«

Clas SL\DHdE}‘ ecompilation

",




Jikes example

iload x INT_ADD tint,xint,5 INT_ADD yint,xint,5

iconst 5 INT_MOVE yint,tint
iadd
istore y

« Simple example showing translation of byte code into native code

e Simple optimizations to remove redundant temporaries have a significant
Impact on later virtual to register mapping phases

e First version corresponds to baseline compiler, second to most basic
optimizing compilation



Method life cycle
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Jikes optimizations

 Jikes makes use of multiple optimization levels and uses these to carefully
trade cost vs gain

» Baseline translates directly into native code simulating operand stack. No
IR, no register allocation. Slightly faster code than interpretation

» Optimizing compiler. Translate into an IR with linear register allocation. 3
further optimization levels:

 Level O: Effective and cheap optimizations. Simple scalar
optimizations and inlining trivial methods. All tend to reduce size of IR

 Level 1: as 0 but with more aggressive speculative inlining. Multiple
passes of level 0 opts and some code reorganizing algorithms

 Level 2: employs simple loop optimizations. Normalization and
unrolling. SSA based flow-sensitive algorithms also employed



Jikes optimizations

Compiler | Bytecodes/millisecond | Speed
Baseline 377.8 1.0
Level O 9.29 4.26
Level 1 5.69 6.07
Level 2 1.81 6.61

» Only worthwhile compiling at a higher level if benefit outweighs cost

« Adaptive algorithm compares cost of code under current level vs an
Increased level

 Crucially depends on anticipated future profile which is unavailable.
Solution - just guess - currently assume twice as long as now!



Jikes optimizations

 Krintz evaluates the adaptive approach

Compiler | Total time Compile time
Baseline 29.24 0.44
Opt 9.98 0.46
Adapt 8.97 0.48

 Figures are time in seconds for SPECjvm98

 Total time is better for Adapt even though it has increased compile-
time.

e Conclusion: knowing hotspots really helps optimization



JIT conclusions

 JITs suffer from having the necessary info too late. Need to anticipate
optimization opportunities.

« Many different optimization scenarios available. Adaptive option
Increases level of optimization when it recompiles increasingly used
hotspots.

« As compile-time is part of runtime, important to find a trade-off between
two



ADAPT

 ADAPT is a mixed approach to optimization that combines static and
iterative compilation in an on-line manner

 Basically at runtime different options of a code section are run concurrently
and the best-one selected. This is done in parallel on remote servers.

» Really trading space for time making an on-line technique viable as an on-
line technique as long as sufficient space available

 Online iterative compilation main contribution

» Only works for scientific programs with relatively static behavior



» All schemes allow specialization at runtime to program and data

» Staged schemes such as DyC are more powerful as they only incur
runtime overhead for specialization regions

« JIT and DBT delay everything to runtime leaving little optimization
opportunities

 All except ADAPT have a hardwired heuristic of what the best strategy is
e Poor at adapting to new platforms

« Apart from ADAPT, none looked at processor specific optimization. Mainly
looked at architecture independent optimizations or standard backend
scheduling or register allocation

 Like PDC only used the data really for limited optimization goals rather
than overcoming undecidability or processor behavior

* None of the techniques would adapt their compilation approach in the light
of experience



Combine static and dynamic optimizations?

* Grigori Fursin, Albert Cohen, Michael O'Boyle and Olivier Temam. A Practical Method For
Quickly Evaluating Program Optimizations. Proceedings of the 1st International Conference
on High Performance Embedded Architectures & Compilers (HIPEAC 2005), number 3793 in
LNCS, pages 29-46, Barcelona, Spain, November 2005

Integration of the run-time adaptation into mainline GCC:

* Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam.
Practical run-time adaptation with procedure cloning to enable continuous collective
compilation. GCC Developers’ Summit. Ottawa, Canada, July 2007

Adaptation for heterogeneous systems (CELL and GPU systems)

* HIPEAC cluster funding to “Explore optimization techniques and runtime code selection
mechanisms for heterogeneous systems” for 18 months starting from September, 2006.
Collaboration with STMicro, IBM, UPC



Run-time adaptation using procedure cloning

Any other ways to solve previous and the following problems?

 Different program context

Different run-time behavior

Different system load

Different available resources

Different architectures & ISA

For each case we want to find and use best optimization settings!



Run-time program behavior

Idea to enable easy static and dynamic optimizations:

» Most time during execution is spent in procedures/functions or loops
» Clone these sections and apply different transformations statically

At run-time add run-time behavior analyzer routines and detect regular
behavior

» Select appropriate code sections depending on run-time behavior of
programs (code sections)

« Continuously recompile program with high-level transformations



Run-time program behavior

Repeatedly executed time-consuming parts of the
code that allow powerful transformations:

typically functions or loops



Run-time program behavior

Repeatedly executed time-consuming parts of the
code that allow powerful transformations:

typically functions or loops

IPC for subroutine resid of benchmark mgrid across calls

IPC

7015 7025
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function calls
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Current methods

Some existing solutions:

[ Application [ Dataset, }
Compiler
Binary } Dynamic
Iterative optimizations
optimizations Y
{ Output, J

: Pros: run-time information,
Pros: powerful transformation
: potentially more than one dataset
space exploration
_ Cons: restrictions on optimization time,
Cons: slow, one dataset
simple optimizations



Current methods

Can we combine both?

[ Application Dataset, J
Compiler
Binary.

|

Output, J

Dynamic
optimizations

Iterative
optimizations

Combination of
powerful transformation space exploration,

run-time information
self-adaptable code




Our approach: static multiversioning

/ Application

Select most time consuming code
sections



Our approach: static multiversioning

/ Application

Create multi-versions of time
consuming code sections



Our approach: static multiversioning

Application
[ adapt_start ] [ adapt_start ]
) ]
W V} W V}
adapt_stop ] adapt_stop ]

Add phase detection/prediction



Our approach: static multiversioning

Transformations

Application

[ adapt_start ] [ adapt_start ]
) ]

WVV} WVV}

adapt_stop ] adapt_stop ]

Apply various transformations over
multi-versions of code sections



Our approach: static multiversioning

Fine-grain internal compiler (PathScale, Open64, ORC, gcc) transformations
using Interactive Compilation Interface (ICl)

Transformations

Application

[ adapt_\été‘[t\] [ adapt_start ]
) ]
W A\ 4 W A 4
adapt_stop adapt_stop

Apply various transformations over
multi-versions of code sections



Our approach: static multiversioning

Transformations

Application

[ adapt_start ] [ adapt_start

:

adapt_stop ] adapt_stop

Apply various transformations over
multi-versions of code sections



Our approach: static multiversioning

Manual transformations

Transformations

Application

[ adapt_start ] [/,ad/a;t_start /

adapt_stop adapt_stop

Apply various transformations over
multi-versions of code sections



Our approach: static multiversioning

Final instrumented program

Application

[ adapt_start } [ adapt_start

adapt_stop ] adapt_stop




Our approach: static multiversioning

void mult(int NM)
{
int i1, j, k;
int fselect;
co_adapt_select(&fselect);
if (fselect==1) mult_clone(NM);

co_adapt_start(1,0);
for (i = 0; 1 < NM; i++)
for (J = 0; jJ < NM; j++)
for (k = 0; k < NM; k++)
c_matrix[1+NM*j]=c_matrix[1+NM*j]+a_matrix[1+NM*k]*b_matrix[k+NM*j];
co_adapt_stop(1,0);

}
void mult_clone(int NM)
{

int i, j, k;

co_adapt_start(1,1);
for (i = 0; i < NM; i++)
for (J = 0; jJ < NM; j++)
for (k = 0; k < NM; k++)
c_matrix[1+NM*j]=c_matrix[1+NM*j]+a_matrix[ 1+NM*k]*b_matrix[k+NM*j];
co_adapt_stop(1,1);
}




Run-time Adaptation

Programs with regular behavior

Programs with irregular behavior




Adaptation for regular behaviour

IPC for subroutine resid of benchmark mgrid across calls
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Detect regular (stable) patterns of behaviour (phases) - we define stability as
3 consecutive or periodic executions with the same IPC

» Predict further occurrences with the same IPC
(using period and length of regions with stable performance)



Adaptation for regular behaviour

IPC for subroutine resid of benchmark mgrid across calls
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3 consecutive or periodic executions with the same IPC

» Predict further occurrences with the same IPC
(using period and length of regions with stable performance)

Detect regular (stable) patterns of behaviour (phases) - we define stability as



Adaptation for regular behaviour

Execution times for subroutine resid of benchmark mgrid across calls

function calls

startup (phase detection) or end of the optimization process (best option found)

B evaluation of 1 option

1) Consider new code version evaluated after 2 consecutive executions of
the code section with the same performance

2) Ignore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)



Adaptation for regular behaviour

Execution times for subroutine resid of benchmark mgrid across calls

1 2 70 98 3
function calls

startup (phase detection) or end of the optimization process (best option found)

B evaluation of 1 option

1) Consider new code version evaluated after 2 consecutive executions of
the code section with the same performance

2) Ignore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)



Adaptation for regular behaviour
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stability check evaluation ) PDPT), then either select original code during
T > timer start phase detection/stability test or select new code
¢, J\L - sections for iterative optimizations
>< save current time and number of
instructions executed
B by / J PDPT (Phase Detection and Prediction Table)
stability test . selection of the
i - 5 new code section time IPC call period length hits misses state best
L if stability option
A 4 Yy
original original transformed
time consuming time consuming code section T
code section code section
T C
-~ e e k
>< Y
5 calculate time spent in the code Look up current time and IPC in the PDPT;
section and IPC; detect phases and timer stop find the same time & IPC and update period &
check stability; select new code g length or add new phase parameters
for the following execution
\f ¥ /,__//

original code instrumented code




Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

function calls




Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

Execution time, ms
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250 -
200 -
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50 ¢

100 110

function calls

Select versions randomly during a time slot

At each step calculate execution time per function call and variance

When variance for all versions is less than some threshold select the best one



Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

350
300 4------- e i P
250 4 - - ----{} - R —_— N U R | |
200

150 -
100 -
50 4

Execution time, ms

function calls

Select versions randomly during a time slot
» At each step calculate execution time per function call and variance
* When variance for all versions is less than some threshold select the pest one

» Periodically select non-best version to check if behavior changed



Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

350
300
250 4 - - {- -} - 41
200 4 - - {4-F -elH-
150 4 - - 44-H- HH- .
100 +4 - - J4-H-HHEHE -1 - 1
50 H-.- 1{I-H-HH H

Execution time, ms

function calls

» Select versions randomly during a time slot (adaptation slot)
» At each step calculate execution time per function call and variance

 When variance for all versions is less than some threshold select the best one
» Periodically select non-best version to check if behavior changed

« |f the variance increases, adapt again —




Determine the effect of optimizations

Use gprof to collect time spent in functions and clones

time spent in function avt riginal
avt (average time) = --------mmmmmmmmmcmmneneee ., s (speedup) = -------n=mmnnm-

number of calls avloned

Continuous Optimization Framework

sequence of evaluations: speedups S, S,, ... S,

e (expected speedup) = j:l S,. H

~

" (si—e)”

=]

v (variance) = Y

Continuously monitor the variance to detect convergence
across executions



Removing adaptation overhead

4 N

Calls to adaptation routines are not
direct but through array of functions:

static void (*call1] .. ])O;
static void (*call2[ .. ]0;

Application

[ adapt_start ] [ adapt_start ]

adapt_stop adapt_stop ]

Select best code sections



Removing adaptation overhead

Application

[ adapt_start ] [ adapt_start ]

adapt_stop adapt_stop ]

Select best code sections

4 N

Calls to adaptation routines are not
direct but through array of functions:

static void (*call1] .. ])O;
static void (*call2[ .. ]0;

If high-overhead is detected —
substitute call with dummy function

- /




Removing adaptation overhead

Application

[ adapt_start ] [ adapt_start ]

adapt_stop adapt_stop ]

Select best code sections

4 N

Calls to adaptation routines are not
direct but through array of functions:

static void (*call1] .. ])O;
static void (*call2[ .. ]0;

If high-overhead is detected —
substitute call with dummy function

To be able to adapt to new program
behavior later at run-time,
periodically restore all calls to

adaptation routines

- /




Continuous optimization and adaptation

/ Preload /
Behaviour Application Save
Table Behaviour
if more than [ adapt_start } [ adapt_start ] Table
one run

adapt_stop ] adapt_stop

Select best code sections




Continuous optimization and adaptation

Execution times for subroutine resid of benchmark mgrid across calls

-

0.12
0.1

S 0.08

(6]

< 0.06

0.04

0.02

time

1 201

401

601

801

1001

function calls

1201

1401

1601

1801

2001

1st run



Continuous optimization and adaptation

Execution times for subroutine resid of benchmark mgrid across calls

401 601 801 1001 1201 1401 1601 1801 2001

function calls

2strun, same optimizations



Continuous optimization and adaptation

DEMO 2
Benchmark susan edges from MiBench

Clone function susan_edges and put to 2 separate files
Substitute susan_edges with the following:

susan_edges(in,r,mid,bp,max_no,x_size,y size)
uchar *in, *bp, *mid;
int *r, max_no, x_size, y_size;
{
float z;
int do_symmetry, i, j, m, n, a, b, x, y, w;
uchar c,*p,*cp;

if ((randQ) % 2) == 0) susan_edgesO(in,r,mid,bp,max_no,x_size,y size);
else susan_edgesl(in,r,mid,bp,max_no,x_size,y sSize);
}
compile: GCC-01 *.c GCC -03 *.c gcc —c —01 susan.c, susan0.c & gcc —c —03 susanl.c & gcc —O1 *.0
run
exec.time: 10.5s. 75s
profile: susan_edges0: 3.7 s.

susan_edgesl: 2.5s.

Using this simple cloning technique can understand the influence of transformations on part of the code
during one execution. Instead of random function can use some adaptation routines!



Conclusions

» No sophisticated dynamic optimization/recompilation frameworks;
 Allows complex sequences of compiler or manual transformations at run-time;

» Uses simple low-overhead adaptation technique (for codes with regular and
irregular behaviour);

« Combines manual and compiler transformations due to the source-to-source
versioning approach

» Enables self-tuning applications adaptable to program and system behaviour,
and portable across different architectures

» Enables continuous optimizations across runs with different datasets,
transparently to a user

» Can be used for parallel heterogeneous computing (compilation with different
ISA for CELL or GPU-like architectures or various accelerators)

 Reliable, secure, with easy debugging



Conclusions

However:
« Still no optimization knowledge reuse
» Better placement of instrumentation for adaptation is needed

 Better dataset specialization is needed (for library adaptation)



Machine learning based optimizations

Overview
* Machine learning - what is it and why is it useful?
 Predictive modeling
 Loop unrolling and inlining
o Attempt to generalize program optimizations
e Limits and other uses of machine learning

e Future work and summary



Failings of previous approaches

» Before we have looked at techniques to overcome data dependent
behavior and adaption to new processors

 However, we have not looked fundamentally at process of designing a
compiler

« All rely on a “clever” algorithm inserted into the compiler that determines at
compile-time or runtime which optimizations to apply

e Iterative compilation goes beyond this with no a priori knowledge but is not
suitable for general compilations and does not adapt to changing data

 What we want is a smart compiler that adapts its strategy to changes in
program, data and processor



Machine learning as a solution

» Well established area of Al, neural networks, genetic algorithms etc. but
what has Al got to do with compilation?

* In a very simplistic sense machine learning can be considered as
sophisticated form of curve fitting

OUTPUTS

INPUTS




Machine learning

* The inputs are characteristics of the program and processor. Outputs, the
optimization function we are interested in, execution time power or code
size

» Theoretically predict future behavior and find the best optimization

Execution
Best

fime N Transformation

Program characteristics Program characteristics



Global optimization and predictive modeling

» For our purposes it is possible to consider machine learning as global
optimization and predictive modeling

» Global optimization tries to find the best point in a space. This is achieved
by selecting new points, evaluating them and then based on accumulated
Information selecting a new point as a potential optimum

 Hill walking and genetic algorithms are obvious examples. Very strong link
with iterative compilation

 Predictive modeling learns about the optimizations space to build a model.
Then uses this model to select the optimum point. Closely related to global
optimization



Predictive modeling

Traming data features
Test features

Execution 1

fume .| Predictive = MODEL ]
or .;.rhe:r Modelling —

metric

Predicted time

 Predictive modeling technigues all have the property that they try to learn
a model that describes the correlation between inputs and outputs

e This can be a classification or a function or Bayesian probability
distribution

e Distinct training and test data. Compiler writers don't make this distinction!



* The model acts as a fast evaluator for program. Automates Soffa's
performance prediction framework and speeds up iterative compilation

* Nobody has done this yet! Feature selection and accuracy are main

problems!

Predictive modeling as a proxy

User Tngmﬂ

Apply opt
Transformed program

Exmact
Features

AMODEL

‘ Predicted time
Select or output program
try agam”




Training data

 Crucial to this working is correct selection of training data

* The data has to be rich enough to cover the space of programs likely to be
encountered

e If we wish to learn over different processors so that the system can port
then we also need sufficient coverage here too

e In practice it is very difficult to formally state the space of possibly
Interesting programs

e |deas include typical kernels and compositions of them. Hierarchical
benchmark suites could help here



Feature selection of programs

 Crucial problem with machine learning is feature selection. Which features
of a program are likely to predict it's eventual behavior?

* In a sense, features should be a compact representation of a program that
capture the essential performance related aspects and ignore the irrelevant

 Clearly, the number of spaces in the program is unlikely to be significant
nor the user comments

« Compiler IRs are a good starting point as they are condensed program
representation

 Loop nest depth, control-flow graph structure, recursion, pointer based
accesses, data structure



Supervised learning

 Building a model based on given inputs and outputs is an example of
classical supervised learning. We direct the system to find correlations
between selected input features and output behavior

e In fact unsupervised learning may be more useful in the long run.
Generate a large number of examples and features and allow the system to
classify them into related groups with shared behavior

 This prevents missing important features and provide clues as to what
aspects of a program are performance determining

 However, we need many more programs combinatorially than features to
distinguish between them



Space to learn over

» Formalization of compiler optimization has not been taken really seriously

 However, in order to utilize predictive modeling, we need a descriptions of
the program space that allows discrimination between different choices

» Rather than just having a sophisticated model, what we want is a system
that given a program automatically provides the best optimization

» To do this means that we must have a good description of the
transformation space

* The shape of the optimization space will be critical for learning. Clearly
linear regression will not fit the spaces seen before



Which techniques work?

* Short answer: No one knows!

* |t depends on the structure of the problem space (distribution of minima)
and representation of the problem

* One problem particular to compilation is that feature inputs vary in size:
length of program, length of transformation sequence, order of
transformations, etc

 Also we have no agreed way of representing our problem. Several of the
following examples have used different techniques

« Safe to say that the level of ML sophistication is low. Seems that currently
compiler writers tend to try simple things first without too much maths
(though this is gradually changing with the polyhedral transformations being
added to the mainline GCC and XLS compilers) !



Learning to unroll

* Monsifort uses machine learning to determine whether or not it is
worthwhile unrolling a loop

« Rather than building a model to determine the performance benefit of
loop unrolling, try to classify whether or not loop unrolling is worthwhile

 For each training loop, loop unrolling was performed and speedup
recorded

 This output was translated into “good”, “bad” or “no change”

* The loop features were then stored alongside the output ready for
learning



Learning to unroll

» Features used were based on inner loop characteristics

 The model induced is a partitioning of the feature space. The space was
partitioned into those sections where unrolling is good, bad or unchanged

 This division was hyperplanes in the feature space that can easily be
represented by a decision tree

* This learnt model is the easily used at compile time. Extract the features of
the loop and see which section they belong too

» Although easy to construct requires regions in space to be convex. Not true
for combined transformations



Learning to unroll
f features

do1=2, 100 statements |
aritmetic op 2
a(1) = a(1) +a(—-1) +a@+1) iterations 99
array access 4

enddo TCSUSES 3
1fs 0

» Features try to capture structure that may affect unrolling decisions
e Again allows programs to be mapped to fixed feature vector

» Feature selection can be guided by metrics used in existing hand-written
heuristics



» Classified examples give correct result in 85% cases. Better at picking
negative cases due to bias in training set

e Gave an average 4% and 6% reduction in execution time on Ultrasparc
and |A64 compared to 1

 However g77 compiler is an easy compiler to improve upon at that time

 Basic approach - unroll factor not considered



Meta-compilation

 Name comes from optimizing a heuristic rather than optimizing a program
» Stephenson et al 2003 used genetic programming to tune hyperblock
selection, register allocation, and data prefetching within the Trimaran's
IMPACT compiler

* Represent heuristic as a parse tree. Apply mutation and cross over to a
population of parse trees and measure fitness.

e Crossover = swap nodes from 2 random parse trees

« Mutate randomly: selected a node and replace with a random expression



» Two of the pre-existing heuristics were not well implemented
 For hyperblock selection speedup of 1.09 on test set
 For data prefetching the results are worse - just 1.01 speedup

e The authors even admit that turning off data prefetching completely is
preferable and reduces many of their gains

 The third optimization, register allocation is better implemented but only
able to achieve on average a 2% increase over the manually tuned heuristic

* GP Is not a focused technique, IMPACT is not of a commercial quality



Learning over UTF

* Shun (2004) uses Pugh's UTF framework to search for good Java
optimizations

e Space of optimization to learn included entire UTF. Training data gathered
by using a smart iterative search

» Then using a similar feature extraction to Monsifort classify all found
results

» Uses nearest neighbour based learning able to achieve 70% of the
possible performance found using iterative compilation on cross-validated
test data

 Larger experimental set needed to validate results. Going beyond loop
based transformations for Java



Learning to inline

e Inlining Is the number one optimization in JIT compilers. Many papers
from IBM on adaptive algorithms to get it right in Jikes

« Can we use machine learning to improve this highly tuned heuristic?
Tough problem. Similar to meta-optimization goal

« Cavazos (2005) looked at automatically determining inline heuristics
under different scenarios

e Opt vs Adapt - different user compiler options. Total time vs run time vs a
balance - compile time is part of runtime

» X86 vs PPC - can the strategy port across platform



Learning a heuristic

inliningHeuristic(calleeSize, inlineDepth, callerSize)

if (calleeSize > CALLEE_MAX_SIZE)
return NO:

if (calleeSize < ALWAYS_INLINE_SIZE)
return YES;

if (inlineDepth > MAX_INLINE_DEPTH)
return NO;

if (callerSize > CALLER_MAX_SIZE)
return NO:

// Passed all tests so we inline

return YES;

e Focus on tuning parameters of an existing heuristic rather than
generating a new one from scratch

e Features are dynamic. Learn off-line and applied heuristic on-line



Parameters found

Parameters Compilation Scenarios

Orig | Adapt | Opt:Bal | Opt:Tot | Adapt (PPC) | Opt:Bal (PPC)
CalleeMSize 23 49 10 10 47 35
AlwaysSize 11 15 16 6 10 9
MaxDepth 5 10 8 8 2 3
CallerMSize 2048 60 402 2419 1215 3946
HotCalleeMSize 135 138 NA NA 352 NA

» Considerable variation across scenario

 For instance on x86, Bal and Total similar except for the CallerMaxSize

* A priori these values could not be predetermined




Learning to inline

* |nitially tried rule induction - failed miserably. Not clear at this stage why
» Difficult to determine whether optimization has impact
* Next used a genetic algorithm to find a good heuristic

» For each scenario asked the GA to find the best geometric mean over the
training set. Using search for learning

 Training set used - Specjvm98, test set - DaCapo including Specjbb

» Focused learning on choosing the right numeric parameters of a fixed
heuristic

» Applied this to a test set comparing against IBM heuristic



More general approaches?



Static characterization of programs

« Embedded systems application
« UTDSP benchmarks: compute intensive DSP
« AMD Aul500, gcc 3.2.1, -0O3
* TI C6713, Tl compiler v2.21, -O3
« Exhaustively enumerated optimization search space
14 transformations selected
« all combinations of length 5 evaluated
 Allows comparison of techniques
 How near the minima each technique approaches
e Rate of improvement

» Characterization of the space

F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M.F.P. O'Boyle, J.Thomson, M. Toussaint and C.K.l. Williams. Using
Machine Learning to Focus Iterative Optimization. Proceedings of the 4th Annual International Symposium on Code
Generation and Optimization (CGO), New York, NY, USA, March 2006



Static characterization of programs
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Focusing search (off-line training):

 Independent identically distributed (11D) model
» Markov model

Predicting best transformation for a new program:

« Static features
» Nearest neighbors classifier

Search space = 396000
program transformations

Predict 2..10 best
transformations from this
space based on program

features and previous
optimization experience



Dynamic characterization of programs

Previously we used static code features to obtain good
optimizations for new programs

However, it is difficult or impossible to characterize
program run-time behavior on modern complex
architecture using only static code features

Performance counters provide a compact summary of
a program’s dynamic behavior

How to use them to select good optimization settings?

John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’Boyle and Olivier Temam.
Rapidly Selecting Good Compiler Optimizations using Performance Counters. Proceedings of the 5th
Annual International Symposium on Code Generation and Optimization (CGQ), San Jose, USA, March
2007



Programs (training set)

General optimizations

Predictive modeling using logistic regression

tg (baseline option)

rapdom set of transformations

>

perfarmance
COMEr feattires

far the baseline
| | % 4

L
r

(option sequiences) “peeaps
1 1 1
> b %y o Ky - » Architecture L}
tp e x? | xi) 52
1 42 M o > —
(2] X3 . Kar) H
» —_—
7
>
>
>

.

Models

(a) Summary of the predictive modellmg procedure. We use the features x, the transformations
¢, and (umplictly) the speed-ups {5} for constructing the traning data < x , £ > We then
evaluate the mapping from the performance counters to the transformation sequencesx = ¢ by
fitting a probabilistic model to the tramming set.




General optimizations

Using models
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(b) Inference using a predictive model. Given a new benchmark, we first extract performance
courter features. These features are then fed mto our trained models which then output a set of
transformation sequences to apply to thenew benchmark.
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Dynamic characterization of programs

Performance counter values for 181.mcf compiled with -OO0 relative to the average
values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)
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Problem:

greater number of memory accesses per instruction than average



Dynamic characterization of programs

Performance counter values for 181.mcf compiled with -OO0 relative to the average
values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)
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Solving all performance issues one by one is slow and can be

inefficient due to their non-linear dependencies ...



Dynamic characterization of programs

Performance counter values for 181.mcf compiled with -OO0 relative to the average
values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)
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Solving all performance issues one by one is slow and can be

inefficient due to their non-linear dependencies ...

CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME !
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Machine learning for DSE

Speeding up Architecture Design Space Exploration

Problems:

— Developing an optimizing compiler for new architecture is difficult
particularly when only simulator is available

— Tuning such compiler requires many runs
— Simulators are orders of magnitude slower than real processors

— Therefore compiler tuning is highly restricted

Goal:

develop a technique to automatically build a performance model for predicting
the impact of program transformations on any architecture, based on a limited
number of automatically selected runs

John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael F.P. O'Boyle, Grigori Fursin
and Olivier Temam. Automatic Performance Model Construction for the Fast Software Exploration of
New Hardware Designs. International Conference on Compilers, Architecture, And Synthesis For
Embedded Systems (CASES 2006), Seoul, Korea, October 2006



Machine learning for DSE
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Machine learning for DSE
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Machine learning for DSE

Speeding up Architecture Design Space Exploration
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Conclusions

» We believe that machine learning will revolutionize compiler optimization
and will become mainstream within a decade for both compiler
optimizations, run-time adaptation, parallelization and architecture design
space exploration

 However, it is not a panacea, solving all our problems

 Fundamentally, it is an automatic curve fitter. We still have to choose the
parameters to fit and the space to optimize over

« Complexity of space makes a big difference. Tried using Gaussian process
predicting on PFDC'98 spaces - worse than random selection...

 Much remains to be done - fertile research area

Continuous Collective Compilation
http://gcc-ccc.sourceforge.net
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