
Alchemy group, INRIA Futurs, FranceAlchemy group, INRIA Futurs, France

Adaptive and feedback Adaptive and feedback 
driven compilation and driven compilation and 

optimizationoptimization

Grigori FursinGrigori Fursin



My background

•• Ph.D. degree from the University of Edinburgh, UK (1999 Ph.D. degree from the University of Edinburgh, UK (1999 -- 2004)2004)

Program iterative optimizations and performance predictionProgram iterative optimizations and performance prediction

•• Research scientist at INRIA Futurs, France (2004 Research scientist at INRIA Futurs, France (2004 ……))

Iterative feedback directed compilationIterative feedback directed compilation
RunRun--time adaptation and optimizationtime adaptation and optimization
Machine learningMachine learning
Architecture design space explorationArchitecture design space exploration

• Collaborations:

IBM, NXP, STMicro, ARC, ARM, CAPS Enterprise
University of Edinburgh
Universitat Politechinca de Catalunya (UPC)
University of Illinois at Urbana-Champaign (UIUC)



Course overview

Assume that all understand basics of computer architecture and cAssume that all understand basics of computer architecture and compilation ompilation 
process. process. 

Focus on compilers that map user program to machine codeFocus on compilers that map user program to machine code

Explain general major compilation problems instead of focusing oExplain general major compilation problems instead of focusing on individual n individual 
components components 

Describe current major research areas for compilation and optimiDescribe current major research areas for compilation and optimizationzation

•• MotivationMotivation

•• BackgroundBackground

•• Feedback directed compilation and optimizationFeedback directed compilation and optimization

•• Dynamic compilation and optimizationDynamic compilation and optimization

•• Machine learning and future directionsMachine learning and future directions



Motivation

Are compilers important?Are compilers important?



Motivation

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing 
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power 
consumption, size, response, reliability, portability and designconsumption, size, response, reliability, portability and design timetime..
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Motivation

Optimizing compilers play a key role in Optimizing compilers play a key role in producing executable codes quickly producing executable codes quickly 
and automaticallyand automatically while satisfying all the above requirements for a broad while satisfying all the above requirements for a broad 
range of programs and architectures. range of programs and architectures. 

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing 
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power 
consumption, size, response, reliability, portability and designconsumption, size, response, reliability, portability and design timetime..

HighHigh--performance computing systems rapidly evolve toward performance computing systems rapidly evolve toward 
complex heterogeneous multicomplex heterogeneous multi--core systemscore systems

dramatically increased optimization time dramatically increased optimization time 



Motivation

Is it easy? Is it easy? 
What are the challenges?What are the challenges?



Motivation

Is it easy? Is it easy? 
What are the challenges?What are the challenges?

Before answering these questions we need to look at the basics oBefore answering these questions we need to look at the basics of the f the 
current compilerscurrent compilers



Compiler background

•• Compilers translate user programs to machine codeCompilers translate user programs to machine code

•• Translation must be correctTranslation must be correct

•• Needed to hide machine complexityNeeded to hide machine complexity

•• Compilers need to optimize code to satisfy various requirementsCompilers need to optimize code to satisfy various requirements

•• Compilers automatically translate. Can we automate compiler Compilers automatically translate. Can we automate compiler 
construction?construction?

•• Compilers generating compilers exits Compilers generating compilers exits -- GCC, GCC, CoSyCoSy

•• Automatic construction of compiler optimization is very challenAutomatic construction of compiler optimization is very challengingging



Compiler background

Some current popular static optimizing compilers for Linux:Some current popular static optimizing compilers for Linux:

•• GCC (GNU Compiler Collection)GCC (GNU Compiler Collection)

http://http://gcc.gnu.orggcc.gnu.org

•• Open64 Open64 

http://www.open64.nethttp://www.open64.net

•• Intel CompilersIntel Compilers

http://www.intel.com/cd/software/products/asmohttp://www.intel.com/cd/software/products/asmo--nana//
eng/compilers/284264.htmeng/compilers/284264.htm

•• PathScalePathScale CompilersCompilers

http://http://www.pathscale.comwww.pathscale.com



Compiler structure

•• Compiler structure changed little since 1950s: consists of a liCompiler structure changed little since 1950s: consists of a linear near 
sequence of passessequence of passes

•• Lexical Analysis: Lexical Analysis: Finds and verifies basic syntactic items, Finds and verifies basic syntactic items, lexemslexems, , 
tokens using finite state automatatokens using finite state automata

•• Syntax Analysis: Syntax Analysis: Checks tokens following a grammar and builds an Checks tokens following a grammar and builds an 
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Semantic Analysis:Semantic Analysis: Checks that all names are consistently used and Checks that all names are consistently used and 
builds a symbol tablebuilds a symbol table

•• Code optimization and generation:Code optimization and generation: Optimize code using different Optimize code using different 
intermediate formats (IR) and generate machine instructions for intermediate formats (IR) and generate machine instructions for a a 
specific architecture while keeping the meaning of the programspecific architecture while keeping the meaning of the program



sourcesource

codecode

Compiler structure

•• Front EndFront End translates translates ““strings of charactersstrings of characters”” into a structured High Level into a structured High Level 
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Restructurer and Middle EndRestructurer and Middle End performs machine independent performs machine independent 
optimizations including optimizations including ““sourcesource--toto--source transformationssource transformations”” and outputs a and outputs a 
Lower Level Intermediate Representation (IR)Lower Level Intermediate Representation (IR)

•• Can be several Can be several IRsIRs to simplify program to simplify program anlsysisanlsysis, optimizations and , optimizations and 
code generationcode generation

•• Many choices for IR (affect form and strength of program analysMany choices for IR (affect form and strength of program analysis is 
and optimizations)and optimizations)

•• Back EndBack End generally performs machine code generation including generally performs machine code generation including 
instruction scheduling and register allocationinstruction scheduling and register allocation

Front Front 
EndEnd

HLHL

ASTAST
RestructRestruct

HLHL

ASTAST
Middle Middle 

EndEnd
LowLow

IRIR
Back Back 
EndEnd

machinemachine

codecode



IRIR

Optimizer structure

Many optimization passes (Many optimization passes (inlininginlining; dead code elimination; constant ; dead code elimination; constant 
propagation; loop transformations including loop tiling, interchpropagation; loop transformations including loop tiling, interchange, fusionange, fusion--
fisionfision, , vectorizationvectorization, unrolling; automatic parallelization, etc, unrolling; automatic parallelization, etc) with the fixed ) with the fixed 
linear orderlinear order

Optimization passes can be often Optimization passes can be often turned on and offturned on and off using compiler using compiler 
command line flagscommand line flags

Passes are generally applied to either the Passes are generally applied to either the whole programwhole program (Inter(Inter--Procedural Procedural 
Optimizations) or at a Optimizations) or at a function (procedure) levelfunction (procedure) level..

Transformations within passes are often applied on a loop or basTransformations within passes are often applied on a loop or basicic--block block 
level with the fixed linear order and can be level with the fixed linear order and can be parametricparametric

Some transformations can be selected by compiler command line flSome transformations can be selected by compiler command line flags but ags but 
optimization heuristic is often hiddenoptimization heuristic is often hidden from the userfrom the user

Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR



IRIR

Optimizer structure

Is this working well?Is this working well?

(DEMO(DEMO11))

Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR



IRIR

Optimizer structure

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) 1) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 160x160][matrix size 160x160]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around 
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture 

Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR
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Optimizer structure

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) 1) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 160x160][matrix size 160x160]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around 
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture 

Wow! Found good compiler flag! LetWow! Found good compiler flag! Let’’s use it all the time!s use it all the time!
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IRIR

Optimizer structure

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) 1) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 160x160][matrix size 160x160]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around 
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture 

Wow! Found good compiler flag! LetWow! Found good compiler flag! Let’’s use it all the time!s use it all the time!

2) 2) gccgcc --O3 O3 --funrollfunroll--loops loops matmul.cmatmul.c [matrix size 3x3][matrix size 3x3]

Using Using funrollfunroll--loops over default loops over default --O3 optimization level degrades O3 optimization level degrades 
performance by about 10%performance by about 10%

So, selecting this flag is not always good!So, selecting this flag is not always good!

Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR



Room for improvement?

This problem is not new (40+ years)This problem is not new (40+ years)

(Optimizing matrix multiply code)(Optimizing matrix multiply code)
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Challenges

•• Optimizer has to exploit all architectural featuresOptimizer has to exploit all architectural features

-- Instruction and thread level parallelismInstruction and thread level parallelism

-- Effective management of memory hierarchy Effective management of memory hierarchy 

(registers, caches, memory, disk)(registers, caches, memory, disk)

•• Optimization at many levels: source, internal formats, assembleOptimization at many levels: source, internal formats, assemblerr

•• Optimization at many scopes: Optimization at many scopes: 

(whole program, function/procedure, loop, basic block)(whole program, function/procedure, loop, basic block)

•• Which optimizations to use?Which optimizations to use?

•• What is the best order of optimizations?What is the best order of optimizations?

•• How to select right transformation parameters?How to select right transformation parameters?

•• What if transformation parameters depend on runWhat if transformation parameters depend on run--time information?time information?



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhOptimizations typically split into those that are always worthwhile and ile and 
machine specificmachine specific



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhOptimizations typically split into those that are always worthwhile and ile and 
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhOptimizations typically split into those that are always worthwhile and ile and 
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3

However: potentially additional variable However: potentially additional variable -- pressure on register allocation!pressure on register allocation!



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

•• Rapidly evolving architectural features strongly determine the bRapidly evolving architectural features strongly determine the best code est code 
sequencesequence

•• Rarely are all instructions of equal cost. Even if they have theRarely are all instructions of equal cost. Even if they have the same same 
latency, not all function units support all functions.latency, not all function units support all functions.

•• The more complex the hardware, the harder it is to determine theThe more complex the hardware, the harder it is to determine the best best 
code sequencecode sequence

•• Mixed multimedia instructions of different ISA for heterogeneousMixed multimedia instructions of different ISA for heterogeneous
systems systems -- which version to select?which version to select?



ChallengesChallenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Statically (at compile time) analyze the program and transform iStatically (at compile time) analyze the program and transform it based t based 
on architectural features (such as ISA, memory hierarchy, etc) aon architectural features (such as ISA, memory hierarchy, etc) and nd 
requirements (such as reducing execution time or program size) requirements (such as reducing execution time or program size) 

Example of strideExample of stride--1 access. Array C has row1 access. Array C has row--major layout. Makes major layout. Makes 
sense to traverse data rowsense to traverse data row--wise.wise.

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][ia[j][i] + ] + b[ib[i];];

This code traverses the array columnThis code traverses the array column--wisewise

Does not exploit spatial locality. Can have excessive cache missDoes not exploit spatial locality. Can have excessive cache misses.es.



Challenges

Poor stridePoor stride

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][ia[j][i] + ] + b[ib[i];];

•• Neighboring fetched elements not referenced until much laterNeighboring fetched elements not referenced until much later

•• Cache line probably evicted by thenCache line probably evicted by then



Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Static analysis suggests that the innermost Static analysis suggests that the innermost iteratoriterator should be in should be in 
outermost subscript outermost subscript -- should be transformed!should be transformed!

•• Transform Transform -- apply code restructuring to achieve this apply code restructuring to achieve this -- loop interchangeloop interchange

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

a[j][ia[j][i] + ] + b[ib[i];];

•• This code now traverses the array rowThis code now traverses the array row--wise!wise!

•• Linear analysis and transformations can bring dramatic performaLinear analysis and transformations can bring dramatic performance nce 
improvementsimprovements



Challenges

Improved strideImproved stride

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

a[j][ia[j][i] + ] + b[ib[i];];

•• Neighboring fetched elements referenced immediatelyNeighboring fetched elements referenced immediately

•• Cache line unlikely to be evictedCache line unlikely to be evicted



Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• However does not consider other costs. i.e. However does not consider other costs. i.e. b[ib[i] is no longer invariant ] is no longer invariant --
temporal locality losttemporal locality lost

•• Uses idealized model of machine. No account of memory hierarchy,Uses idealized model of machine. No account of memory hierarchy,
cache replacement policy etc.cache replacement policy etc.

•• If any of this were to change, no way of changing the compilerIf any of this were to change, no way of changing the compiler

•• Fundamentally each analysis has a small focused scope and hardwaFundamentally each analysis has a small focused scope and hardware re 
issue to reduce complexity.issue to reduce complexity.

•• No theory/practice to integrate views.No theory/practice to integrate views.



Challenges
Some other transformations: Loop UnrollingSome other transformations: Loop Unrolling

original loop:original loop: unrolled loop (u unrolled loop (u -- unroll factor):unroll factor):

do i = 1, ndo i = 1, n do i = 1, n, udo i = 1, n, u
S1(i) S1(i) S1(i)S1(i)
S2(i)S2(i) S2(i)S2(i)
…… ……

end doend do S1(i+1)S1(i+1)
S2(i+1)S2(i+1) loop body replicatedloop body replicated
…… u timesu times
S1(i+uS1(i+u--1)1)
S2(i+uS2(i+u--1)1)
……

end doend do
do j = i, ndo j = i, n

S1(j)S1(j) processing allprocessing all
S2(j)S2(j) remainingremaining
…… elementselements

end doend do

Which unrolling factor to choose?Which unrolling factor to choose?



Challenges
Some other transformations: Loop TilingSome other transformations: Loop Tiling

original loop nest:original loop nest: transformed loop nest:transformed loop nest:
do IT = 1, N, SSdo IT = 1, N, SS
do JT = 1, N, SSdo JT = 1, N, SS

do I = 1, Ndo I = 1, N do I = IT, MIN(N, IT+SSdo I = IT, MIN(N, IT+SS--1)1)
do J = 1, Ndo J = 1, N do J = JT, MIN(N, JT+SSdo J = JT, MIN(N, JT+SS--1)1)

A(I,J) = A(I,J) + B(I,J)A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J)    A(I,J) = A(I,J) + B(I,J)    
C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2 C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2

end doend do end doend do
end doend do end doend do

end doend do
end doend do

iteration spaceiteration space iteration spaceiteration space
of the original loop:of the original loop: of the transformed loop:of the transformed loop:



Motivation

Current stateCurrent state--ofof--thethe--art compilers and optimizers often fail to art compilers and optimizers often fail to 
deliver best performance on modern systems due to deliver best performance on modern systems due to 
fundamental reason of complexity and fundamental reason of complexity and undecidabilityundecidability
•• lack of runlack of run--time information time information -- impossible to know the best code sequence at impossible to know the best code sequence at 
compilecompile--timetime

•• simplistic hardware models for rapidly evolving processor archisimplistic hardware models for rapidly evolving processor architecture while its tecture while its 
behavior with outbehavior with out--ofof--order execution and caches is nonorder execution and caches is non--deterministicdeterministic

•• long chain of optimization passes long chain of optimization passes -- difficult to predict best order, inevitably loss difficult to predict best order, inevitably loss 
of information along the pathof information along the path

•• fixed blackfixed black--box optimization heuristics and inability to finebox optimization heuristics and inability to fine--tune applicationstune applications

•• inability to reuse optimization knowledge among different progrinability to reuse optimization knowledge among different programs and ams and 
architecturesarchitectures

•• inability to adapt to varying program and system behavior at ruinability to adapt to varying program and system behavior at runn--timetime



Motivation

CCurrent urrent compiler andcompiler and optimization technologies should be revisited optimization technologies should be revisited 
to keep pace with rapidly evolving hardwareto keep pace with rapidly evolving hardware

Need static compilers that can continuously and automatically leNeed static compilers that can continuously and automatically learn arn 
how to optimize programs, and have an ability to adapt at runhow to optimize programs, and have an ability to adapt at run--time time 

for different behavior and constraintsfor different behavior and constraints



Formalization of optimization

Compilation as OptimizationCompilation as Optimization

•• Define Define ““formalformal”” optimization problem: minimize objective function over optimization problem: minimize objective function over 
a space of options.a space of options.

•• Objective function is execution time, though code size, power aObjective function is execution time, though code size, power and nd 
other constraints can be important.other constraints can be important.

•• Optimization search space: all possible equivalent programsOptimization search space: all possible equivalent programs

•• Objective function is Objective function is undecidableundecidable in generalin general

•• Optimization space: infiniteOptimization space: infinite



Formalization of optimization

IntractabilityIntractability

•• Solving an Solving an undecidableundecidable problem over an infinite space is clearly not problem over an infinite space is clearly not 
feasible so simplification is necessaryfeasible so simplification is necessary

•• Traditionally have broken the problem into subTraditionally have broken the problem into sub--problems based on certain problems based on certain 
assumptionsassumptions

•• Solve the problem by looking at each in isolation:Solve the problem by looking at each in isolation:

•• Code generationCode generation -- determining the best code for an expression is NPdetermining the best code for an expression is NP

•• SchedulingScheduling -- determining the best order of instruction is NPdetermining the best order of instruction is NP

•• Register allocationRegister allocation determining the best use of registers to minimize determining the best use of registers to minimize 
memory traffic is NPmemory traffic is NP



Formalization of optimization

How to overcome?How to overcome?

Two main problems:Two main problems:

•• ComplexityComplexity of processor architecture, of processor architecture, undecidabilityundecidability of programof program

Both problems arise from trying to optimize statically at compilBoth problems arise from trying to optimize statically at compile timee time

•• Have to Have to guess a tractable modelguess a tractable model, have to , have to guess about data inputguess about data input

•• Pros and Cons to all approaches. Depends highly on application Pros and Cons to all approaches. Depends highly on application 
scenarioscenario



Formalization of optimization

Taxonomy:Taxonomy:

2 main causes: program 2 main causes: program undecidabilityundecidability and processor complexityand processor complexity

•• Variables (what): Program (P), Data (D) and Processor (proc)Variables (what): Program (P), Data (D) and Processor (proc)

•• Variables (when): design, compile or runtimeVariables (when): design, compile or runtime

•• 2 sides of adaption: portability and specialization2 sides of adaption: portability and specialization

•• Examine all techniques in this lightExamine all techniques in this light



Formalization of optimization

Taxonomy:Taxonomy:

•• Program (P), Data (D) and Processor (proc)Program (P), Data (D) and Processor (proc)

•• time = time = f(T(P),D,procf(T(P),D,proc), Pick Transformation T to minimize f), Pick Transformation T to minimize f

•• Standard compilation (SC) typically has a hardwired model of prStandard compilation (SC) typically has a hardwired model of proc oc 
built inbuilt in

•• SC also has an ad hoc view of typical programs (often biased bySC also has an ad hoc view of typical programs (often biased by
SPEC!) with a SPEC!) with a compiler strategy compiler strategy that is biased to themthat is biased to them

•• SC applies the strategy at compile time making no reference to dSC applies the strategy at compile time making no reference to dataata

•• Data in no way affects SC behavior Data in no way affects SC behavior -- just guess a just guess a ““typicaltypical”” input setinput set



Formalization of optimization
Taxonomy:Taxonomy:

Design time:Design time:

•• Build a compiler: encode compiler optimization strategy. TypicaBuild a compiler: encode compiler optimization strategy. Typically a time lly a time 
consuming manual process. Takes many personconsuming manual process. Takes many person--years. Particular to one years. Particular to one 
processor, data and programs unknownprocessor, data and programs unknown

Compile time:Compile time:

•• Examine program and apply transformations based on design time Examine program and apply transformations based on design time 
encoded strategy. Can take a reasonable amount of time. Must be encoded strategy. Can take a reasonable amount of time. Must be less than less than 
accumulated runtime throughout lifetime of programaccumulated runtime throughout lifetime of program

•• Processor assumed, program known, data unknownProcessor assumed, program known, data unknown

RunRun--time:time:

•• Most knowledge about application available: processor, program Most knowledge about application available: processor, program and dataand data

•• Least amount of time available to do anything about it!Least amount of time available to do anything about it!

•• Typically compilers do nothing Typically compilers do nothing -- leave to independent runtime system/OSleave to independent runtime system/OS



Formalization of optimization

Taxonomy: Adaptation = Portability + SpecializationTaxonomy: Adaptation = Portability + Specialization

Compiler technology not normally discussed in this manner. 

Appears an infrastructure rather than optimization issue.

Portability:

• Ability to MODIFY behavior to changing circumstances, changing data, 
program, processor

Specialization:

• Ability to EXPLOIT fixed, known features: processor, program and data

Natural tension between the two: flexibility vs rigidity



Formalization of optimization

Taxonomy: current static compilersTaxonomy: current static compilers

• What and when to port/specialize: 
processor, program, data, design, compile, runtime

• Currently: specialize to processor at design time 
BUT cannot easily port to a new processor

• Portable across a wide range of programs and data 
at compile and runtime BUT

• Do not specialize to runtime data or program/processor interaction

• Very little exploitation of dynamic runtime knowledge/
Adaption to changing processor or data not considered



Formalization of optimization

What are the ways to solve this problems?What are the ways to solve this problems?



Feedback directed compilation

•• Profile feedback directed compilationProfile feedback directed compilation

•• Application tuningApplication tuning

•• Iterative compilationIterative compilation

•• Efficient searchingEfficient searching

•• ConclusionConclusion



Feedback directed compilation

Feedback directed (profile directed compilation)Feedback directed (profile directed compilation)

•• Directly addresses problem of compile time unknown data Directly addresses problem of compile time unknown data 

•• Key (simple) idea: run program once and collect some useful infKey (simple) idea: run program once and collect some useful information ormation 

•• Use this runtime information to improve program performance Use this runtime information to improve program performance 

•• In effect move the first runtime info into the compile time phaIn effect move the first runtime info into the compile time phase se 

•• Makes sense if gathering the profile data is cheap and user wilMakes sense if gathering the profile data is cheap and user willing to pay ling to pay 
for 2 compiles. Can still use after first compile. for 2 compiles. Can still use after first compile. 

•• Allows specialization to runAllows specialization to run--time data time data –– what are pros and cons? what are pros and cons? 



Feedback directed compilation

OffOff--line line vsvs onon--line compilationline compilation

•• Profile directed compilation is one example of offProfile directed compilation is one example of off--line optimization line optimization 

•• Information is gathered and utilized before the Information is gathered and utilized before the ““productionproduction”” run run 

•• OnOn--line schemes gather information and dynamically change program line schemes gather information and dynamically change program 
as it runs. as it runs. 

•• OffOff--line schemes work on basis that costs incurred at compileline schemes work on basis that costs incurred at compile--time are time are 
outweighed by improved runtime. Can be more aggressive than onoutweighed by improved runtime. Can be more aggressive than on--line line 
schemes. schemes. 



Feedback directed compilation

Traditional compilation modelTraditional compilation model

Program Compiler Executable

Multiple data

Results



Feedback directed compilation

Profile information as an additional outputProfile information as an additional output

Data can change from run to run. Executable is still correct.Data can change from run to run. Executable is still correct.

Program Compiler Executable Profile Compiler Executable

Data0

Results0

Data1

Results1



Feedback directed compilation

Brief historyBrief history

•• The use of profiling to aid program performance has been around The use of profiling to aid program performance has been around for a for a 
whilewhile

•• profprof, , gprofgprof (1982). A tool to help developers to understand their code. (1982). A tool to help developers to understand their code. 
Instrumentation at compile time and then sampled at runtimeInstrumentation at compile time and then sampled at runtime

•• Hardware analysis (1980s). Monitor program behavior and adapt. Hardware analysis (1980s). Monitor program behavior and adapt. 
Branch prediction Branch prediction -- pipelines means need to guess which branch to takepipelines means need to guess which branch to take

•• Edge/node based profile information for compilers 1990s Edge/node based profile information for compilers 1990s 

•• Path based profiling Path based profiling LarusLarus + Ball late 1990s, Smith 2000 + Ball late 1990s, Smith 2000 
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PDC for classic optimizationPDC for classic optimization

•• Record frequently taken edges of program controlRecord frequently taken edges of program control--flow graph flow graph 

•• IMPACT compiler in 1990s good example of this but also used earIMPACT compiler in 1990s good example of this but also used earlier lier --
Josh Fisher et al, Josh Fisher et al, MultiflowMultiflow. . 

•• Use weight information of edges and paths in graph to restructuUse weight information of edges and paths in graph to restructure re 
controlcontrol--flow graph to enable greater optimization flow graph to enable greater optimization 

•• Main idea: merge frequently executed basic blocks increasing siMain idea: merge frequently executed basic blocks increasing sizes of zes of 
basic block if possible (superblock/basic block if possible (superblock/hyperblockhyperblock) formation. Fix up rest of ) formation. Fix up rest of 
code. code. 

•• Allows improved scheduling of instructions and more aggressive Allows improved scheduling of instructions and more aggressive scalar scalar 
optimizations at expense of code size optimizations at expense of code size 
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PDC example 1PDC example 1

•• Sequence of basic blocks Sequence of basic blocks 

•• Frequency of execution on Frequency of execution on 
edges and nodes edges and nodes 

•• Primarily ABEF Primarily ABEF 

•• Other entry/exit controlOther entry/exit control--flow flow 
prevents merging prevents merging 

•• SuperSuper--block block --frequently frequently 
executed path executed path 

•• Merge and tidyMerge and tidy--up up 

•• Optimize larger unit Optimize larger unit 
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PDC example 1PDC example 1

•• Selecting the trace Selecting the trace 

•• Start at most frequent blockStart at most frequent block

•• Add blocks on most frequent Add blocks on most frequent 
successors successors 

•• Repeat on other nodes Repeat on other nodes 

•• Done in both controlDone in both control--flow flow 
directions directions 

•• Do on remaining nodesDo on remaining nodes
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PDC example 1PDC example 1

•• Tail Duplication Tail Duplication 

•• Duplicate first block with  Duplicate first block with  
external entry edges external entry edges 

•• But not the head But not the head 

•• Redirect incoming edgesRedirect incoming edges

•• Duplicate outgoing Duplicate outgoing 

•• Repeat Repeat 

•• Much code duplication Much code duplication 
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PDC example 2PDC example 2

Common b + c on frequently taken pathCommon b + c on frequently taken path
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PDC example 2PDC example 2

Replicate first node on main path with external incoming edge Replicate first node on main path with external incoming edge 

Now separate pathsNow separate paths
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PDC example 2PDC example 2

Applying CSE eliminates redundant computation at cost of additioApplying CSE eliminates redundant computation at cost of additional codenal code
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Edge Edge vsvs Path profilingPath profiling

•• Overlapping paths cannot be distinguished by edge profiling Overlapping paths cannot be distinguished by edge profiling 

•• Path profiling allows much greater accuracy Path profiling allows much greater accuracy 

•• However, combinatorial explosion in paths. Cycles in graphs leadHowever, combinatorial explosion in paths. Cycles in graphs leads to s to 
potentially unbounded number potentially unbounded number 

•• In practice Edge/node profiling only captures around 40In practice Edge/node profiling only captures around 40--50 50 

•• LarusLarus and Ball and Ball ’’99 developed an efficient path profiler that avoids these 99 developed an efficient path profiler that avoids these 
problems. In practice the benefit achieved was small though problems. In practice the benefit achieved was small though 

•• Mike Smith at Harvard extended this idea for more targeted optimMike Smith at Harvard extended this idea for more targeted optimization ization 
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Some results when using PDC (FursinSome results when using PDC (Fursin’’2002)2002)

SPEC CPU95SPEC CPU95
Alpha compiler (21264)Alpha compiler (21264)
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Some results when using PDC (FursinSome results when using PDC (Fursin’’2002)2002)

SPEC CPU95SPEC CPU95
Intel Compiler (Pentium III) Intel Compiler (Pentium III) –– poor improvementpoor improvement

Extremely well studied benchmarksExtremely well studied benchmarks
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Beyond PDCBeyond PDC

•• Although useful, the performance gains are modest Although useful, the performance gains are modest 

•• Challenge of Challenge of undecidabilityundecidability and processor behavior not addressed. and processor behavior not addressed. 

•• What happens if data changes on the second run? What happens if data changes on the second run? 

•• Really focuses on persistent controlReally focuses on persistent control--flow behavior flow behavior 

•• All other information i.e. runAll other information i.e. run--time values, memory locations accessed are time values, memory locations accessed are 
ignoredignored

•• Can we get more out of knowing data and its impact on program Can we get more out of knowing data and its impact on program 
behavior?behavior?



Evolution of PDC

Feedback directed compilation

PDC with multiple (iterative) compilesPDC with multiple (iterative) compiles

Program Compiler Executable Profiles

Multiple data

Results
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Automatic library tuningAutomatic library tuning

•• A different offA different off--line approach that exploits knowledge gained by running line approach that exploits knowledge gained by running 
the program in the optimization process the program in the optimization process 

•• There is a (growing) family of application specific approaches tThere is a (growing) family of application specific approaches to library o library 
tuningtuning

•• Rather than recording path information for later optimization Rather than recording path information for later optimization –– just record just record 
execution time execution time 

•• Try many different versions of the program and select the best fTry many different versions of the program and select the best for that or that 
machine. Key issue is how different programs are generated. machine. Key issue is how different programs are generated. 

•• In effect move runIn effect move run--time into design time. time into design time. 

Main examples Main examples ATLAS, ATLAS, PHiPACPHiPAC and FFTWand FFTW
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ATLASATLAS

•• An automatic method of tuning linear algebraic libraries for difAn automatic method of tuning linear algebraic libraries for differing fering 
processorsprocessors

•• It is domain specific and only focuses on tuning the core GEMM rIt is domain specific and only focuses on tuning the core GEMM routine outine 
for a specific processor. for a specific processor. 

•• Takes an adTakes an ad--hoc approach hoc approach -- generate different versions and measure generate different versions and measure 
them against anything available them against anything available -- including vendor supplied libraries and including vendor supplied libraries and 
pick the best pick the best 

•• It tries different software pipelining and register tiling paramIt tries different software pipelining and register tiling parameters and eters and 
enumerates them all, selecting the best. The space of options isenumerates them all, selecting the best. The space of options is derived derived 
from explicit knowledge of the application behavior. from explicit knowledge of the application behavior. 



Feedback directed compilation

ATLAS

Broken down into application specific, generic and platform specific sections
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ATLAS

• Regularly outperforms the best existing approaches. Now the standard 
approach to library generation. 

• Adaption?: Very portable - works on any platform AND specializes to the 
particular processor 

• BUT specialized to a particular application -no portability across 
programs no exploitation of runtime data as static control-flow 

• PHiPAC tries to exploit data patterns in sparse structures by trying 
simple optimizations off-line and applying them at run-time when data 
encountered.

• However - domain specific, not generalizable or widely automatable 
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Iterative compilationIterative compilation

•• Iterative compilation started in 1997 with the OCEANS project Iterative compilation started in 1997 with the OCEANS project 

•• Similar in spirit to automatic tuning except the space of tuningSimilar in spirit to automatic tuning except the space of tuning is in fact is in fact 
the entire program transformation space the entire program transformation space 

•• In a sense it is direct implementation of the formal compiler opIn a sense it is direct implementation of the formal compiler optimization timization 
problem. Find transformation T that minimizes cost. problem. Find transformation T that minimizes cost. 

•• Main ideas was to combine high and low level optimization and usMain ideas was to combine high and low level optimization and use cost e cost 
models to guide selection models to guide selection 

•• Highly ambitious but immature infrastructure prevented much progHighly ambitious but immature infrastructure prevented much progress ress 
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OCEANS

• Similar iterative structure to ATLAS

• Main work on searching for best tile 
and unroll parameters PFDC’98
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matrix multiply, N=400, UltraSparc, exhaustive search

Minimum at: Unroll=3, Tile size=57

Near minimum: 2.6%, original 4.99 sec, minimum 0.56 sec



Feedback directed compilation

matrix multiply, N=400, UltraSparc, random search

50 steps: within 0.0%. Initially 2.65 times slower than minimum
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matrix multiply, N=512, Alpha, exhaustive search

Minimum at: Unroll=4, Tile size=85

Near minimum: 0.9%, original 31.72 sec, minimum 3.34 sec, 
maximum 81.40 !
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matrix multiply, N=512, Alpha, random search

50 steps: within 21.9%. Originally 5.25 times slower than minimum
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matrix multiply, N=400, Pentium Pro, exhaustive search

Minimum at: Unroll=19, Tile size=57

Near minimum: 4.3%, original 4.88 sec, minimum 1.43 sec



Feedback directed compilation

matrix multiply, N=400, Pentium Pro, random search

50 steps: within 10.5%
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matrix multiply, N=512, R10000, exhaustive search

Minimum at: Unroll=4, Tile size=85

Near minimum: 7.2%, original 2.79 sec, minimum 1.09 sec



Feedback directed compilation

matrix multiply, N=512, R10000, random search

50 steps: within 4.9%
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Phase orderPhase order

•• Oceans work looked at parameterized high level search spaces (tiOceans work looked at parameterized high level search spaces (tiling, ling, 
unrolling). Restricted by compilers and only small kernel explorunrolling). Restricted by compilers and only small kernel exploration ation 

•• Impressive search results due to Impressive search results due to ““tunedtuned”” heuristic and small spaces. In heuristic and small spaces. In 
practice depends on space shape practice depends on space shape 

•• Keith Cooper et al Keith Cooper et al ’’99 onwards also looked at iterative compilation 99 onwards also looked at iterative compilation 

•• CooperCooper’’s search space was the orderings of phases within a compiler s search space was the orderings of phases within a compiler 

•• Lower level and not tied to any language. More generic and exploLower level and not tied to any language. More generic and explores the res the 
ageage--old phase ordering problem more directly old phase ordering problem more directly 



Feedback directed compilation

•• Cooper has found improvements up to 25% over default sequencesCooper has found improvements up to 25% over default sequences

•• Examined search heuristics that find good points quicklyExamined search heuristics that find good points quickly

•• However, evaluation approach is strange and results donHowever, evaluation approach is strange and results don’’t seem t seem 
portableportable
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DSP systemsDSP systems

•• Iterative compilation proved to be useful for embedded applicatiIterative compilation proved to be useful for embedded applications or ons or 
libraries.libraries.

•• It is difficult to improve on embedded compilers and hard to getIt is difficult to improve on embedded compilers and hard to get access access 
to internals. HLT is attractive but pointers cause problems to internals. HLT is attractive but pointers cause problems 

•• Franke et al 2005 overcomes this with a pointer recovery + SUIF Franke et al 2005 overcomes this with a pointer recovery + SUIF based based 
transformation explorer. Uses 2 search strategies transformation explorer. Uses 2 search strategies 
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DSP framework

Using this framework to exhaustively explore and characterize thUsing this framework to exhaustively explore and characterize the e 
optimization spaceoptimization space
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Franke et alFranke et al

•• Looks through space of 80Looks through space of 808080 transformations on 3 platforms for UTDSP transformations on 3 platforms for UTDSP 
benchmark suite. Not feasible to do exhaustively. Really stressebenchmark suite. Not feasible to do exhaustively. Really stresses SUIF s SUIF 

•• 2 algorithms. Trade2 algorithms. Trade--off between coverage and focus. Random search off between coverage and focus. Random search --
select a random length up to 80. Then randomly select any select a random length up to 80. Then randomly select any 
transformation for each location. Lots of redundant transformatitransformation for each location. Lots of redundant transformations. ons. 

•• PBIL: Population based inference learning. Modify probability ofPBIL: Population based inference learning. Modify probability of
selecting transformation based on previous trials. Only examine selecting transformation based on previous trials. Only examine effective effective 
transformations transformations 

•• Average 41% reduction. PBIL finds the best in majority of cases Average 41% reduction. PBIL finds the best in majority of cases but but 
Random best has higher speed up. Random best has higher speed up. 
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Impact of transformationsImpact of transformations
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Results

• Tried 500 runs. On UTDSP benchmark: TriMedia average speedup of 
1.43 and 1.73 for TigerSharc

• Shows that HLT can give a big win compared to backend optimizations 

• Also compared GCC and ICC on embedded Celeron 

• Original: ICC 1.22 faster than GCC 

• GCC + IC: speedup of 1.54 - better than ICC 

• BUT ICC + IC: speedup of 2.14 



Feedback directed compilation
Interactive Compilation Interface (Fursin et alInteractive Compilation Interface (Fursin et al’’2005)2005)

Instead of developing new compiler or transformations tools, moInstead of developing new compiler or transformations tools, modify current dify current 
popular (nonpopular (non--research) rigid compilers into simpler transparent open transforresearch) rigid compilers into simpler transparent open transformation mation 
toolsets with externally toolsets with externally tunabletunable optimization heuristics through a standardized optimization heuristics through a standardized 
Interactive Compilation Interface (ICI)Interactive Compilation Interface (ICI)

Control only decision process at global or local level and avoiControl only decision process at global or local level and avoid revealing all d revealing all 
intermediate compiler representation to allow further transparenintermediate compiler representation to allow further transparent compiler evolutiont compiler evolution

Narrow down optimization space by suggesting only legal transfoNarrow down optimization space by suggesting only legal transformationsrmations

Enable iterative recompilation algorithm to apply sequences of Enable iterative recompilation algorithm to apply sequences of transformationstransformations

Treat current optimization heuristic as a blackTreat current optimization heuristic as a black--box and progressively adapt it to a box and progressively adapt it to a 
given program and given architecturegiven program and given architecture

Allow lifeAllow life--long, wholelong, whole--program optimization research with optimization knowledge program optimization research with optimization knowledge 
reusereuse
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Interactive Compilation InterfaceInteractive Compilation Interface

ApplicationApplication

BinaryBinary

SourceSource--toto--sourcesource
transformerstransformers

BinaryBinary--toto--binarybinary
transformerstransformers

Decision for               Perform Decision for               Perform 
transformation transformation 11 transftransf 11

SubSub--heuristic heuristic ii

SubSub--heuristic heuristic 11

SubSub--heuristic heuristic jj

SubSub--heuristic heuristic 22

SubSub--heuristic heuristic kk

Compiler optimization Compiler optimization 
heuristicheuristic

Decision for             Perform Decision for             Perform 
transformation transformation ii transftransf ii
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Interactive Compilation InterfaceInteractive Compilation Interface

ICIICI11
PerformPerform
transf. transf. 11

Decision for Decision for 
transformation transformation 11

ICIICI22
PerformPerform
transf. transf. 22

Decision for Decision for 
transformation transformation 22

ICIICIii
PerformPerform
transf. transf. ii

Decision for Decision for 
transformation transformation ii

Rigid compiler Rigid compiler 
optimization heuristicoptimization heuristic

““black boxblack box””

ProgramProgram
OptimizationOptimization

DatabaseDatabase
BinaryBinary

ExternalExternal
compilercompiler
driversdrivers

Iterative Interactive Iterative Interactive 
CompilerCompiler

ApplicationApplication
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Interactive Compilation InterfaceInteractive Compilation Interface

moves toward simpler modular compilermoves toward simpler modular compiler
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Interactive Compilation InterfaceInteractive Compilation Interface

int get_interface_version (void);int get_interface_version (void);

void clean_scope (void);void clean_scope (void);

bool scope_to_function (char *func_name);bool scope_to_function (char *func_name);

bool scope_to_loop (int loop);bool scope_to_loop (int loop);

void *get_feature (char *feature_name);void *get_feature (char *feature_name);

char **get_available_features_for_type (int type);char **get_available_features_for_type (int type);

bool run_pass (char *pass_name)bool run_pass (char *pass_name);;

bool unroll_loop( int factor,bool unroll_loop( int factor, enum UNROLL_TYPE type);enum UNROLL_TYPE type);

bool loop_interchange (int loop_number);bool loop_interchange (int loop_number);

bool loop_fusion (int nr_of_consecutive_loops);bool loop_fusion (int nr_of_consecutive_loops);

bool function_inline (int call_id);bool function_inline (int call_id);
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Interactive Compilation InterfaceInteractive Compilation Interface

#include "ic#include "ic--controller.h"controller.h"
#include "ic#include "ic--interface.h"interface.h"
bool start (char *params)bool start (char *params)
{{
int *version = get_interface_version ();int *version = get_interface_version ();
bool ret = (*version > 100) ? true : false;bool ret = (*version > 100) ? true : false;
free(version);free(version);
return ret;return ret;

}}
void stop (void)void stop (void)
{{
/* nothing to be done; *//* nothing to be done; */

}}
void controller (void)void controller (void)
{{
char **passes = get_feature ("global_passes");char **passes = get_feature ("global_passes");
char **functions = get_feature ("functions");char **functions = get_feature ("functions");
char **tmp, **tmp1;char **tmp, **tmp1;
// IPA passes// IPA passes
for (tmp = passes; *tmp != NULL; tmp++)for (tmp = passes; *tmp != NULL; tmp++)
{{
char *pass_name = *tmp;char *pass_name = *tmp;
// run_pass should never return false, since we are performing s// run_pass should never return false, since we are performing same passame pass
// order as GCC.// order as GCC.
run_pass(pass_name);run_pass(pass_name);
free(pass_name);free(pass_name);
}}
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Interactive Continuous CompilationInteractive Continuous Compilation

applicationapplication

binarybinary

sourcesource--toto--source source 
transformationstransformations

current compilerscurrent compilers

executionexecution

binarybinary--toto--binary binary 
transformationstransformations
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Interactive Continuous CompilationInteractive Continuous Compilation

applicationapplication

binarybinary

sourcesource--toto--source source 
transformationstransformations

Iterative Interactive Iterative Interactive 
CompilerCompiler

executionexecution

binarybinary--toto--binary binary 
transformationstransformations

Program Program 
Transformation Transformation 

DatabaseDatabase

Iterative Optimizations/Iterative Optimizations/
Machine LearningMachine Learning

Development Websites:Development Websites:

http://gcchttp://gcc--ici.sourceforge.netici.sourceforge.net

http://pathscalehttp://pathscale--
ici.sourceforge.netici.sourceforge.net

http://open64http://open64--ici.sourceforge.netici.sourceforge.net

http://gcchttp://gcc--ccc.sourceforge.netccc.sourceforge.net
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Evaluating iterative compilation with multiple datasetsEvaluating iterative compilation with multiple datasets

MiDataSets for MiDataSets for MiBenchMiBench –– 20 per program20 per program

Iterative search for best compiler flags using Iterative search for best compiler flags using PathScalePathScale compiler suitecompiler suite

Grigori Fursin, John Cavazos, Michael OGrigori Fursin, John Cavazos, Michael O’’Boyle and Olivier Temam. MiDataSets: Creating Boyle and Olivier Temam. MiDataSets: Creating 
The Conditions For A More Realistic Evaluation of Iterative OptiThe Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of mization. Proceedings of 
the the International Conference on High Performance Embedded ArchitectuInternational Conference on High Performance Embedded Architectures & Compilers res & Compilers 
(HiPEAC 2007), Ghent, Belgium, January 2007(HiPEAC 2007), Ghent, Belgium, January 2007

Development website:Development website: http://http://midatasets.sourceforge.netmidatasets.sourceforge.net
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Data sets reactions to optimizations (Data sets reactions to optimizations (dijkstradijkstra).).
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Data sets reactions to optimizations (jpeg decode).Data sets reactions to optimizations (jpeg decode).
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Variation of best optimizations across programs (SHA)Variation of best optimizations across programs (SHA)
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Variation of best optimizations across programs (SUSAN Corners)Variation of best optimizations across programs (SUSAN Corners)
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Search speedSearch speed

•• The main problem is optimization space size and speed to solutioThe main problem is optimization space size and speed to solution n 

•• Many use a cut down transformation space Many use a cut down transformation space -- but this just imposes ad but this just imposes ad 
hoc non portable bias hoc non portable bias 

•• Need to have large interesting transformation space. Orthogonal Need to have large interesting transformation space. Orthogonal -- no no 
repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 vrepetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very ery 
systematic but doesnsystematic but doesn’’t cover everything t cover everything 

•• Build search techniques to find good points quickly Build search techniques to find good points quickly 
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Using modelsUsing models

•• Obvious approach is to use cheap static modes to help reduce numObvious approach is to use cheap static modes to help reduce number ber 
of runsof runs

•• Difficulty is to balance savings gained by model against hardwirDifficulty is to balance savings gained by model against hardwiring ing 
strategy strategy 

•• Wolfe and Wolfe and MayadanMayadan generate many versions of a program and check generate many versions of a program and check 
against an internal cache models rather than generate the best bagainst an internal cache models rather than generate the best by y 
construction construction 

•• Although more successful doesnAlthough more successful doesn’’t address problem of processor t address problem of processor 
complexity. No real feedback (Pugh A* search ). Cannot adapt complexity. No real feedback (Pugh A* search ). Cannot adapt 

•• Knijnenburg et al PACT 2000 use simple cache models as filters. Knijnenburg et al PACT 2000 use simple cache models as filters. Used Used 
to eliminate bad options rather than as substitute for feedback.to eliminate bad options rather than as substitute for feedback. Obtained Obtained 
significant speed up significant speed up 
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Search spaceSearch space

•• Understanding the shape or structure of search space is vital toUnderstanding the shape or structure of search space is vital to
determining good ways to search it determining good ways to search it 

•• Unfortunately little agreementUnfortunately little agreement

•• VuducVuduc ’’99 shows that minima dramatically vary across processor99 shows that minima dramatically vary across processor

•• Cooper shows that reasonable minima are very near any given poinCooper shows that reasonable minima are very near any given pointt

•• However, our recent work shows that it strongly depends on scenaHowever, our recent work shows that it strongly depends on scenario. rio. 
Rich space on a Rich space on a TriMediaTriMedia while golf green on the TI. Should use while golf green on the TI. Should use 
structure to aid search structure to aid search 

•• VuducVuduc uses distribution of good points as stopping criteriauses distribution of good points as stopping criteria

•• Fursin use upper bound of performance as guide. Fursin use upper bound of performance as guide. 



Finding a good solution may be 
long and non-trivial

matmul, 2 transformations, 
search space = 2000

swim, 3 transformations,
search space = 1052

Feedback directed compilation

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (OHigh potential (O’’Boyle, Cooper), but:Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large, ) are large, 
nonnon--linear with many local minimalinear with many local minima

Solving these problems is nonSolving these problems is non--trivialtrivial
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Next will focus on Next will focus on 

dynamic compilation/optimization approaches to dynamic compilation/optimization approaches to 
adapt to different programs behavior at runadapt to different programs behavior at run--time time 

and machine learning to speed up iterative and machine learning to speed up iterative 
searchsearch……



Finding a good solution may be 
long and non-trivial

matmul, 2 transformations, 
search space = 2000

swim, 3 transformations,
search space = 1052

Reminder

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large, ) are large, 
nonnon--linear with many local minimalinear with many local minima
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long and non-trivial

matmul, 2 transformations, 
search space = 2000

swim, 3 transformations,
search space = 1052

Reminder

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (OHigh potential (O’’Boyle, Cooper), but:Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large, ) are large, 
nonnon--linear with many local minimalinear with many local minima



Finding a good solution may be Finding a good solution may be 
long and nonlong and non--trivialtrivial

matmul, 2 transformations, 
search space = 2000

swim, 3 transformations,
search space = 1052

Reminder

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (OHigh potential (O’’Boyle, Cooper), but:Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Optimization spaces (set of all possible program transformationsOptimization spaces (set of all possible program transformations) are large, ) are large, 
nonnon--linear with many local minimalinear with many local minima

Solving these problems is nonSolving these problems is non--trivialtrivial



Dynamic techniques

•• All today's techniques focus on delaying some or all of the optAll today's techniques focus on delaying some or all of the optimizations to imizations to 
runtimeruntime

•• This has the benefit of knowing the exact runtime controlThis has the benefit of knowing the exact runtime control--flow, hotspots, flow, hotspots, 
data values, memory locations and hence complete program knowleddata values, memory locations and hence complete program knowledgege

•• It thus largely eliminates many of the It thus largely eliminates many of the undecidableundecidable issues of compileissues of compile--time time 
optimization by delaying until runtimeoptimization by delaying until runtime

•• However, the cost of analysis/optimization is now crucial as it However, the cost of analysis/optimization is now crucial as it forms a forms a 
runtime overhead. All techniques characterized by trying to explruntime overhead. All techniques characterized by trying to exploit runtime oit runtime 
knowledge with minimal costknowledge with minimal cost



Background

•• Delaying compiler operations until runtime has been used for maDelaying compiler operations until runtime has been used for many yearsny years

•• Interpreters translates and execute at runtimeInterpreters translates and execute at runtime

•• Languages developed in the 60s Languages developed in the 60s ieie AlgolAlgol 68 allowed dynamic memory 68 allowed dynamic memory 
allocation relying on language specific runtime system to mange allocation relying on language specific runtime system to mange memorymemory

•• Lisp more fundamentally has runtime type checking of objectsLisp more fundamentally has runtime type checking of objects

•• Smalltalk in the 80s deferred compilation to runtime to reduce tSmalltalk in the 80s deferred compilation to runtime to reduce the amount he amount 
of compilation otherwise required in the 00 settingof compilation otherwise required in the 00 setting

•• Java applications are compiled into Java applications are compiled into bytecodebytecode and to run on Java Virtual and to run on Java Virtual 
Machines (JVM) thus making them portable across architecturesMachines (JVM) thus making them portable across architectures

•• .NET applications (mainly for Windows) similarly execute in a r.NET applications (mainly for Windows) similarly execute in a runun--time time 
environment called Common Language Environment (CLR)environment called Common Language Environment (CLR)



Runtime specialization

•• For many, runtime optimization is For many, runtime optimization is ““adaptive optimizationadaptive optimization””

•• Although wide range of techniques, all are based around runtimeAlthough wide range of techniques, all are based around runtime
specializationspecialization

•• Constant propagation is a simple exampleConstant propagation is a simple example

•• Specializing an interpreter with respect to a program gives a cSpecializing an interpreter with respect to a program gives a compilerompiler

•• Can we specialize at runtime to gain benefit with minimal overhCan we specialize at runtime to gain benefit with minimal overhead? ead? 
Statically inserted selection codeStatically inserted selection code vsvs parameterized codeparameterized code vsvs runtime runtime 
generationgeneration



Different techniques

Static code selection                    Parameterized          Static code selection                    Parameterized          Code generationCode generation



DyC

•• One of the best known dynamic program specializations techniqueOne of the best known dynamic program specializations techniques based s based 
on dynamic code generationon dynamic code generation

•• The user annotates the program defining where there may be opporThe user annotates the program defining where there may be opportunities tunities 
for runtime specialization. Marks variables and memory locationsfor runtime specialization. Marks variables and memory locations that are that are 
static within a particular scopestatic within a particular scope

•• The system generates code that checks the annotated values at ruThe system generates code that checks the annotated values at runtime ntime 
and regenerates code on the flyand regenerates code on the fly

•• By using annotation, the system avoids overBy using annotation, the system avoids over--checking and hence runtime checking and hence runtime 
overhead. However, this is at the cost of additional user overheoverhead. However, this is at the cost of additional user overheadad



DyC

Binding analysis 
examines all uses of 
static variables within 
scope

Dynamic compiler 
exploits invariance and 
specializes the code 
when invoked



DyC results

•• Asymptotic speedup and a range programs varies from 1.05 to 4.6Asymptotic speedup and a range programs varies from 1.05 to 4.6

•• Strongly depends on percentage of time spent in the dynamically Strongly depends on percentage of time spent in the dynamically compiled compiled 
region. Varies from 9.9 to 100%region. Varies from 9.9 to 100%

•• Low overhead from 13 cycles to 823 cycles per instruction generaLow overhead from 13 cycles to 823 cycles per instruction generatedted

•• However relies on user intervention which However relies on user intervention which may not be realisticmay not be realistic in large in large 
applicationsapplications

•• Relies on user Relies on user correctly annotatingcorrectly annotating the codethe code



Calpa for DyC

•• CalpaCalpa is a system aimed at automatically identifying opportunities fois a system aimed at automatically identifying opportunities for r 
specialization without user interventionspecialization without user intervention

•• It analyses the program for potential opportunities and determinIt analyses the program for potential opportunities and determines the es the 
possible cost possible cost vsvs the potential benefitthe potential benefit

•• For example if a variable is multiplied by another variable whicFor example if a variable is multiplied by another variable which is known to h is known to 
be constant in a particular scope, then if this is equal to 0 orbe constant in a particular scope, then if this is equal to 0 or 1 then cheaper 1 then cheaper 
code maybe generatedcode maybe generated

•• If this is inside a deep loop then a quick test for 0 or 1 outsiIf this is inside a deep loop then a quick test for 0 or 1 outside the loop will de the loop will 
be profitable be profitable 



Calpa for DyC

•• CalpaCalpa is a frontis a front--end end 
to to DyCDyC

•• It uses It uses 
instrumentation to instrumentation to 
guide annotation guide annotation 
insertioninsertion

C programC program

CalpaCalpa
instrumentationinstrumentation

CalpaCalpa
annotationannotation

instrumented  instrumented  
C programC program

annotated       annotated       
C programC program

DyCDyC
compilercompiler

compiled         compiled         
C programC program

dynamic dynamic 
compilercompiler

value value 
profileprofile

sample sample 
inputinput



Calpa for DyC

•• Instruments code and sees how often variables change value. GiveInstruments code and sees how often variables change value. Given this n this 
data determined the cost and benefit for a region of codedata determined the cost and benefit for a region of code

•• Number of different variants, cost of generating code, cache looNumber of different variants, cost of generating code, cache lookup. Main kup. Main 
benefit determined by estimating new critical pathbenefit determined by estimating new critical path

•• Explores all specialization up to a threshold. Widely different Explores all specialization up to a threshold. Widely different overheads 2 overheads 2 
seconds to 8 hours. In two cases improves seconds to 8 hours. In two cases improves -- from 6.6% to 22.6%from 6.6% to 22.6%

•• CalpaCalpa and and DyCDyC utilize selective dynamic code generation. Now look at fully utilize selective dynamic code generation. Now look at fully 
dynamic schemesdynamic schemes



Dynamic binary translation

•• The key idea is to take one ISA binary and translate it into anThe key idea is to take one ISA binary and translate it into another ISA other ISA 
binary at runtime.binary at runtime.

•• In fact this happens inside Intel processors where x86 is unpackIn fact this happens inside Intel processors where x86 is unpacked and ed and 
translated into an internal RISC translated into an internal RISC opcodeopcode which is then scheduled. The which is then scheduled. The 
TransMetaTransMeta Crusoe processor does the same. Same with IBM legacy Crusoe processor does the same. Same with IBM legacy ISAsISAs..

•• Why don't we do this statically? Many reasons!Why don't we do this statically? Many reasons!

•• The source ISA is legacy but the processor internal ISA changes.The source ISA is legacy but the processor internal ISA changes. It is It is 
impossible to determine statically what is the program. It is noimpossible to determine statically what is the program. It is not legal to store t legal to store 
a translation. It can be applied to a local ISA for long term opa translation. It can be applied to a local ISA for long term optimizationtimization



DAISY

•• One of the best known schemes came out of IBM headed by One of the best known schemes came out of IBM headed by KemalKemal
EbciogluEbcioglu

•• Aimed at translating PowerPC binaries to the IBM VLIW machineAimed at translating PowerPC binaries to the IBM VLIW machine

•• Idea was to have a simple powerful inIdea was to have a simple powerful in--order machine with a software layer order machine with a software layer 
handling complexities of PowerPC ISAhandling complexities of PowerPC ISA

•• Dynamic translation opens up opportunities for dynamic optimizatDynamic translation opens up opportunities for dynamic optimization.ion.

•• Concerned for industrial strength usage. Exceptions, selfConcerned for industrial strength usage. Exceptions, self--modifying code modifying code 
etcetc……



DAISY

•• At runtime, program path and data known. But need a low overheadAt runtime, program path and data known. But need a low overhead
scheme to make worthwhilescheme to make worthwhile

•• Specialization happens naturally as we know runtime value of varSpecialization happens naturally as we know runtime value of variablesiables

•• Can bias code generation to check for profitable casesCan bias code generation to check for profitable cases

•• DAISY uses a code cache of recently translated code segmentDAISY uses a code cache of recently translated code segment

•• Automatic superblock formation and schedulingAutomatic superblock formation and scheduling



DAISY structure

•• Power PC code runs without modificationPower PC code runs without modification

•• DAISY specific additions separated by dotted lineDAISY specific additions separated by dotted line

•• Initially interpret PowerPC instructions and then compile afterInitially interpret PowerPC instructions and then compile after hitting hitting 
thresholdthreshold

••Then schedule and save instruction in cache (2Then schedule and save instruction in cache (2--4k). Untaken branches 4k). Untaken branches 
are translated as (unused) calls to the binary translatorare translated as (unused) calls to the binary translator



DAISY example

•• Here the group is expanded Here the group is expanded 
to contain two conditionalsto contain two conditionals

•• Path A is encountered and Path A is encountered and 
translatedtranslated



DAISY example

•• When Path B is encountered When Path B is encountered 
for the first timefor the first time

•• Translator is calledTranslator is called



DAISY example

•• Code in cache is now Code in cache is now 
updatedupdated

•• Paths A and B require no Paths A and B require no 
further translationfurther translation

•• One One untranslateduntranslated path path 
remainingremaining

•• Only translate and store code Only translate and store code 
if neededif needed



DYNAMO

•• Similar to DAISY though focuses on binary to binary optimizationSimilar to DAISY though focuses on binary to binary optimizations on the s on the 
same ISA. One of the claims is that it allows compilation with same ISA. One of the claims is that it allows compilation with --01 but 01 but 
overtime provides overtime provides --03 performance.03 performance.

•• Catches dynamic cross module optimization opportunities missed bCatches dynamic cross module optimization opportunities missed by the y the 
static compiler. Code layout optimization allowing improved schestatic compiler. Code layout optimization allowing improved scheduling due duling due 
to bigger segments. Branch alignment and partial procedural to bigger segments. Branch alignment and partial procedural inlininginlining form form 
part of the optimizationspart of the optimizations

•• Aimed as way of improving performance from a shipped binary overAimed as way of improving performance from a shipped binary overtimetime

•• Unlike DAISY, have to use existing hardware Unlike DAISY, have to use existing hardware -- no additional fragment no additional fragment 
cache availablecache available



DYNAMO

•• Initially interprets code. This is very fast as the code is natiInitially interprets code. This is very fast as the code is native. When a ve. When a 
branch is encountered check if already translatedbranch is encountered check if already translated

•• If it has been translated jump and context switch to the fragmenIf it has been translated jump and context switch to the fragment cache t cache 
code and execute. Otherwise if hot translate and put in cachecode and execute. Otherwise if hot translate and put in cache

•• Over time the working set forms in the cache and Dynamo overheadOver time the working set forms in the cache and Dynamo overhead
reduces reduces -- less than 1.5less than 1.5

•• Cheap profiling, predictability Cheap profiling, predictability 

•• Linear code structure in cache makes optimization cheap. StandaLinear code structure in cache makes optimization cheap. Standard rd 
redundancy elimination appliedredundancy elimination applied



Just in Time Compilation

•• Key idea: lazy compilation. Defer compiling a section of high leKey idea: lazy compilation. Defer compiling a section of high level code vel code 
until it is encountered during program execution. For OO programuntil it is encountered during program execution. For OO programs it has s it has 
been shown that this greatly reduces the amount of code to compibeen shown that this greatly reduces the amount of code to compile. le. 
Krintz'00 shows 14 to 26% reduction in total time.Krintz'00 shows 14 to 26% reduction in total time.

•• Greater knowledge of runtime context allowing optimization to beGreater knowledge of runtime context allowing optimization to be focused focused 
on important parts of programon important parts of program

•• However is Just in time really Just too late? Why wait until exHowever is Just in time really Just too late? Why wait until execution time ecution time 
to compile when the code may be lying around on disk for months to compile when the code may be lying around on disk for months 
beforehandbeforehand

•• Main reason Main reason -- dynamic linking of code especially in Java. This restricts the dynamic linking of code especially in Java. This restricts the 
optimizations availableoptimizations available



Jikes

•• Most Java compilers initially interpret, then compile and finalMost Java compilers initially interpret, then compile and finally optimize ly optimize 
based on frequency of usebased on frequency of use

•• Normally done on a per method basis Normally done on a per method basis 

•• Jikes instead directly compiles code when encountered to native Jikes instead directly compiles code when encountered to native machine machine 
codecode

•• Well known robust research compiler freely availableWell known robust research compiler freely available

•• Much work Much work centredcentred around what level of optimization to apply and when to around what level of optimization to apply and when to 
apply itapply it



Jikes structure



Jikes example

•• Simple example showing translation of byte code into native codSimple example showing translation of byte code into native codee

•• Simple optimizations to remove redundant temporaries have a sigSimple optimizations to remove redundant temporaries have a significant nificant 
impact on later virtual to register mapping phasesimpact on later virtual to register mapping phases

•• First version corresponds to baseline compiler, second to most First version corresponds to baseline compiler, second to most basic basic 
optimizing compilationoptimizing compilation



Method life cycle



Jikes optimizations

•• Jikes makes use of multiple optimization levels and uses these Jikes makes use of multiple optimization levels and uses these to carefully to carefully 
trade cost trade cost vsvs gaingain

•• Baseline translates directly into native code simulating operandBaseline translates directly into native code simulating operand stack. No stack. No 
IR, no register allocation. Slightly faster code than interpretaIR, no register allocation. Slightly faster code than interpretationtion

•• Optimizing compiler. Translate into an IR with linear register aOptimizing compiler. Translate into an IR with linear register allocation. 3 llocation. 3 
further optimization levels:further optimization levels:

•• Level 0: Effective and cheap optimizations. Simple scalar Level 0: Effective and cheap optimizations. Simple scalar 
optimizations and optimizations and inlininginlining trivial methods. All tend to reduce size of IRtrivial methods. All tend to reduce size of IR

•• Level 1: as 0 but with more aggressive speculative Level 1: as 0 but with more aggressive speculative inlininginlining. Multiple . Multiple 
passes of level 0 opts and some code reorganizing algorithmspasses of level 0 opts and some code reorganizing algorithms

•• Level 2: employs simple loop optimizations. Normalization and Level 2: employs simple loop optimizations. Normalization and 
unrolling. SSA based flowunrolling. SSA based flow--sensitive algorithms also employedsensitive algorithms also employed



Jikes optimizations

1.01.0
4.264.26
6.076.07
6.616.61

377.8377.8
9.299.29
5.695.69
1.811.81

BaselineBaseline
Level 0Level 0
Level 1Level 1
Level 2Level 2

SpeedSpeedBytecodesBytecodes/millisecond/millisecondCompilerCompiler

•• Only worthwhile compiling at a higher level if benefit outweighOnly worthwhile compiling at a higher level if benefit outweighs costs cost

•• Adaptive algorithm compares cost of code under current level Adaptive algorithm compares cost of code under current level vsvs an an 
increased levelincreased level

•• Crucially depends on anticipated future profile which is unavaiCrucially depends on anticipated future profile which is unavailable. lable. 
Solution Solution -- just guess just guess -- currently assume twice as long as now!currently assume twice as long as now!



Jikes optimizations

•• KrintzKrintz evaluates the adaptive approachevaluates the adaptive approach

•• Figures are time in seconds for SPECjvm98Figures are time in seconds for SPECjvm98

•• Total time is better for Adapt even though it has increased comTotal time is better for Adapt even though it has increased compilepile--
time.time.

•• Conclusion:Conclusion: knowing hotspots really helps optimizationknowing hotspots really helps optimization

0.440.44
0.460.46
0.480.48

29.2429.24
9.989.98
8.978.97

BaselineBaseline
OptOpt
AdaptAdapt

Compile timeCompile timeTotal timeTotal timeCompilerCompiler



JIT conclusions

•• JITsJITs suffer from having the necessary info too late. Need to anticipsuffer from having the necessary info too late. Need to anticipate ate 
optimization opportunities.optimization opportunities.

•• Many different optimization scenarios available. Adaptive optionMany different optimization scenarios available. Adaptive option
increases level of optimization when it recompiles increasingly increases level of optimization when it recompiles increasingly used used 
hotspots.hotspots.

•• As compileAs compile--time is part of runtime, important to find a tradetime is part of runtime, important to find a trade--off between off between 
twotwo



ADAPT

•• ADAPT is a mixed approach to optimization that combines static ADAPT is a mixed approach to optimization that combines static and and 
iterative compilation in an oniterative compilation in an on--line mannerline manner

•• Basically at runtime different options of a code section are runBasically at runtime different options of a code section are run concurrently concurrently 
and the bestand the best--one selected. This is done in parallel on remote servers.one selected. This is done in parallel on remote servers.

•• Really trading space for time making an onReally trading space for time making an on--line technique viable as an online technique viable as an on--
line technique as long as sufficient space availableline technique as long as sufficient space available

•• Online iterative compilation main contributionOnline iterative compilation main contribution

•• Only works for scientific programs with relatively static behaviOnly works for scientific programs with relatively static behavioror



•• All schemes allow specialization at runtime to program and dataAll schemes allow specialization at runtime to program and data

•• Staged schemes such as Staged schemes such as DyCDyC are more powerful as they only incur are more powerful as they only incur 
runtime overhead for specialization regionsruntime overhead for specialization regions

•• JIT and DBT delay everything to runtime leaving little optimizatJIT and DBT delay everything to runtime leaving little optimization ion 
opportunitiesopportunities

•• All except ADAPT have a hardwired heuristic of what the best strAll except ADAPT have a hardwired heuristic of what the best strategy isategy is

•• Poor at adapting to new platformsPoor at adapting to new platforms

•• Apart from ADAPT, none looked at processor specific optimizatioApart from ADAPT, none looked at processor specific optimization. Mainly n. Mainly 
looked at architecture independent optimizations or standard baclooked at architecture independent optimizations or standard backend kend 
scheduling or register allocationscheduling or register allocation

•• Like PDC only used the data really for limited optimization goalLike PDC only used the data really for limited optimization goals rather s rather 
than overcoming than overcoming undecidabilityundecidability or processor behavioror processor behavior

•• None of the techniques would adapt their compilation approach inNone of the techniques would adapt their compilation approach in the light the light 
of experienceof experience

Summary



Combine static and dynamic optimizations?

•• Grigori Fursin, Albert Cohen, Michael O'Boyle and Olivier TemamGrigori Fursin, Albert Cohen, Michael O'Boyle and Olivier Temam. A Practical Method For . A Practical Method For 
Quickly Evaluating Program Optimizations. Quickly Evaluating Program Optimizations. Proceedings of the 1st International Conference Proceedings of the 1st International Conference 
on High Performance Embedded Architectures & Compilers (HiPEAC 2on High Performance Embedded Architectures & Compilers (HiPEAC 2005)005), number 3793 in , number 3793 in 
LNCS, pages 29LNCS, pages 29--46, Barcelona, Spain, November 2005 46, Barcelona, Spain, November 2005 

Integration of the runIntegration of the run--time adaptation into mainline GCC:time adaptation into mainline GCC:

•• Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam. and Olivier Temam. 
Practical runPractical run--time adaptation with procedure cloning to enable continuous colltime adaptation with procedure cloning to enable continuous collective ective 
compilation. compilation. GCC DevelopersGCC Developers’’ SummitSummit. Ottawa, Canada, July 2007. Ottawa, Canada, July 2007

Adaptation for heterogeneous systems (CELL and GPU systems)Adaptation for heterogeneous systems (CELL and GPU systems)

•• HiPEAC cluster funding to HiPEAC cluster funding to ““ExplorExploree optimization techniques and runtime code selection optimization techniques and runtime code selection 
mechanisms for heterogeneous systemsmechanisms for heterogeneous systems”” for 18 months starting from September, 2006. for 18 months starting from September, 2006. 
Collaboration with Collaboration with STMicroSTMicro, IBM, UPC, IBM, UPC



Run-time adaptation using procedure cloning

Any other ways to solve previous and the following problems?Any other ways to solve previous and the following problems?

•• Different program contextDifferent program context

•• Different runDifferent run--time behaviortime behavior

•• Different system loadDifferent system load

•• Different available resourcesDifferent available resources

•• Different architectures & ISADifferent architectures & ISA

For each case we want to find and use  best optimization settingFor each case we want to find and use  best optimization settings!s!



Run-time program behavior

Idea to enable easy static and dynamic optimizations:Idea to enable easy static and dynamic optimizations:

•• Most time during execution is spent in procedures/functions or Most time during execution is spent in procedures/functions or loopsloops

•• Clone these sections and apply different transformations staticClone these sections and apply different transformations staticallyally

•• At runAt run--time add runtime add run--time behavior analyzer routines and detect regular time behavior analyzer routines and detect regular 
behaviorbehavior

•• Select appropriate code sections depending on runSelect appropriate code sections depending on run--time behavior of time behavior of 
programs (code sections)programs (code sections)

•• Continuously recompile program with highContinuously recompile program with high--level transformationslevel transformations



Run-time program behavior

Repeatedly executed timeRepeatedly executed time--consuming parts of the consuming parts of the 
code that allow powerful transformations:code that allow powerful transformations:

typically functions or loopstypically functions or loops



Run-time program behavior

IPC for subroutine resid of benchmark mgrid across calls

Repeatedly executed timeRepeatedly executed time--consuming parts of the consuming parts of the 
code that allow powerful transformations:code that allow powerful transformations:

typically functions or loopstypically functions or loops
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ApplicationApplication

CompilerCompiler

BinaryBinary

Can we combine both?Can we combine both?

DatasetDataset11

OutputOutput11

Iterative Iterative 
optimizationsoptimizations

Dynamic Dynamic 
optimizationsoptimizations

Combination ofCombination of
powerful transformation space exploration,powerful transformation space exploration,

runrun--time information time information 
selfself--adaptable codeadaptable code

Current methods



Our approach: static multiversioning

ApplicationApplication

Select most time consuming code Select most time consuming code 
sectionssections



Our approach: static multiversioning

ApplicationApplication

Create multiCreate multi--versions of time versions of time 
consuming code sectionsconsuming code sections



Our approach: static multiversioning

ApplicationApplication

Add phase detection/predictionAdd phase detection/prediction

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop



Our approach: static multiversioning

ApplicationApplication
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Our approach: static multiversioning

ApplicationApplication

Apply various transformations over Apply various transformations over 
multimulti--versions of code sectionsversions of code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

TransformationsTransformations

FineFine--grain internal compiler (grain internal compiler (PathScalePathScale, Open64, ORC, gcc) transformations , Open64, ORC, gcc) transformations 
using Interactive Compilation Interface (ICI)using Interactive Compilation Interface (ICI)



Our approach: static multiversioning

ApplicationApplication

Apply various transformations over Apply various transformations over 
multimulti--versions of code sectionsversions of code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

TransformationsTransformations



ApplicationApplication

Apply various transformations over Apply various transformations over 
multimulti--versions of code sectionsversions of code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

TransformationsTransformations

Manual transformationsManual transformations

Our approach: static multiversioning



ApplicationApplication

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

Final instrumented programFinal instrumented program

Our approach: static multiversioning



void void mult(intmult(int NM)NM)
{{
int i, j, k;int i, j, k;
intint fselectfselect;;
co_adapt_select(&fselectco_adapt_select(&fselect););
if (if (fselectfselect==1)  ==1)  mult_clone(NMmult_clone(NM););

co_adaptco_adapt_start_start(1,0);(1,0);
for (i = 0; i < NM; i++)for (i = 0; i < NM; i++)
for (j = 0; j < NM; j++)for (j = 0; j < NM; j++)
for (k = 0; k < NM; k++)for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NMc_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];*j];

co_adaptco_adapt_stop_stop(1,(1,00););
}}

void multvoid mult_clone_clone(int NM)(int NM)
{{
int i, j, k;int i, j, k;
co_adaptco_adapt_start_start(1,(1,11););
for (i = 0; i < NM; i++)for (i = 0; i < NM; i++)
for (j = 0; j < NM; j++)for (j = 0; j < NM; j++)
for (k = 0; k < NM; k++)for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NMc_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];*j];

co_adaptco_adapt_stop_stop(1,(1,11););
}}

Our approach: static multiversioning



Run-time Adaptation

Depends on program behaviour 

Programs with regular behavior

Programs with irregular behavior



Adaptation for regular behaviour

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function calls

IP
C

•• Detect regular (stable) patterns of behaviour (phases) Detect regular (stable) patterns of behaviour (phases) -- we define stability as we define stability as 
3 consecutive or periodic executions with the same IPC3 consecutive or periodic executions with the same IPC

•• Predict further occurrences with the same IPC                 Predict further occurrences with the same IPC                 
(using period and length of regions with stable performance)(using period and length of regions with stable performance)

IPC for subroutine IPC for subroutine residresid of benchmark of benchmark mgridmgrid across callsacross calls



Adaptation for regular behaviour
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IPC for subroutine IPC for subroutine residresid of benchmark of benchmark mgridmgrid across callsacross calls

period=7, length=2period=7, length=2

•• Detect regular (stable) patterns of behaviour (phases) Detect regular (stable) patterns of behaviour (phases) -- we define stability as we define stability as 
3 consecutive or periodic executions with the same IPC3 consecutive or periodic executions with the same IPC

•• Predict further occurrences with the same IPC                 Predict further occurrences with the same IPC                 
(using period and length of regions with stable performance)(using period and length of regions with stable performance)



Adaptation for regular behaviour

1)1) Consider new code version evaluated after 2 consecutive executioConsider new code version evaluated after 2 consecutive executions of ns of 
the code section with the same performancethe code section with the same performance

2)  Ignore one next execution to avoid transitional effects2)  Ignore one next execution to avoid transitional effects

3)  Check baseline performance (to verify stability prediction)3)  Check baseline performance (to verify stability prediction)

Execution times for subroutine Execution times for subroutine residresid of benchmark of benchmark mgridmgrid across callsacross calls
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Adaptation for regular behaviour
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•• Select versions randomly during a time slot (adaptation slot)Select versions randomly during a time slot (adaptation slot)

•• At each step calculate execution time per function call and vaAt each step calculate execution time per function call and varianceriance

•• When variance for all versions is less than some threshold selWhen variance for all versions is less than some threshold select the best oneect the best one

•• Periodically select nonPeriodically select non--best version to check if behavior changedbest version to check if behavior changed

•• If the variance increases, adapt againIf the variance increases, adapt again
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Determine the effect of optimizations

Use Use gprofgprof to collect time spent in functions and clonesto collect time spent in functions and clones

time spent in function time spent in function avtavt originaloriginal
avtavt (average time) = (average time) = ---------------------------------------------------------- , , s (speedup)  = s (speedup)  = ------------------------------

number of callsnumber of calls avtavtclonedcloned

Continuous Optimization FrameworkContinuous Optimization Framework
sequence of evaluations: speedups ssequence of evaluations: speedups s11, s, s22, , …… ssnn

e (expected speedup) = e (expected speedup) = 

v (variance) = v (variance) = 

Continuously monitor the variance to detect convergence Continuously monitor the variance to detect convergence 
across executionsacross executions



Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not 
direct but through array of functions:direct but through array of functions:

static void (*call1[ .. ])();static void (*call1[ .. ])();
static void (*call2[ .. ])();static void (*call2[ .. ])();ApplicationApplication

Select best code sectionsSelect best code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop
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Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not 
direct but through array of functions:direct but through array of functions:

static void (*call1[ .. ])();static void (*call1[ .. ])();
static void (*call2[ .. ])();static void (*call2[ .. ])();

If highIf high--overhead is detected overhead is detected ––
substitute call with substitute call with dummydummy functionfunction

To be able to adapt to new program To be able to adapt to new program 
behavior later at runbehavior later at run--time, time, 
periodically periodically restorerestore all calls to all calls to 
adaptation routinesadaptation routines

ApplicationApplication

Select best code sectionsSelect best code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop



Continuous optimization and adaptation

ApplicationApplication

Select best code sectionsSelect best code sections

adapt_startadapt_start

adapt_stopadapt_stop

adapt_startadapt_start

adapt_stopadapt_stop

One or multiple executions One or multiple executions 
with the same or different datasets:with the same or different datasets:

Preload Preload 
Behaviour Behaviour 

TableTable
if more than if more than 

one runone run

SaveSave
Behaviour Behaviour 

TableTable
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Continuous optimization and adaptation

DEMO 2DEMO 2

Benchmark Benchmark susansusan edges from edges from MiBenchMiBench

Clone function Clone function susan_edgessusan_edges and put to 2 separate filesand put to 2 separate files
Substitute Substitute susan_edgessusan_edges with the following:with the following:

susan_edges(in,r,mid,bp,max_no,x_size,y_sizesusan_edges(in,r,mid,bp,max_no,x_size,y_size))
ucharuchar *in, **in, *bpbp, *mid;, *mid;
intint *r, *r, max_nomax_no, , x_sizex_size, , y_sizey_size;;

{{
float z;float z;
intint do_symmetrydo_symmetry, i, j, m, n, a, b, x, y, w;, i, j, m, n, a, b, x, y, w;
ucharuchar c,*p,*cp;c,*p,*cp;

if ((rand() % 2) == 0) susan_edges0(in,r,mid,bp,max_no,x_size,if ((rand() % 2) == 0) susan_edges0(in,r,mid,bp,max_no,x_size,y_size);y_size);
else                   susan_edges1(in,r,mid,bp,max_no,x_size,else                   susan_edges1(in,r,mid,bp,max_no,x_size,y_size);y_size);

}}

compile:     GCC compile:     GCC ––O1 *.c       GCC O1 *.c       GCC ––O3 *.c             O3 *.c             gccgcc ––c c ––O1 O1 susan.csusan.c, susan0.c  &  , susan0.c  &  gccgcc ––c c ––O3 susan1.c & O3 susan1.c & gccgcc ––O1 *.oO1 *.o
runrun
exec.timeexec.time:      10.5 s.                 7.5 s.:      10.5 s.                 7.5 s.
profile:                                                        profile:                                                        susan_edges0:   3.7 s.susan_edges0:   3.7 s.

susan_edges1:   2.5 s.susan_edges1:   2.5 s.

Using this simple cloning technique can understand the influenceUsing this simple cloning technique can understand the influence of transformations on part of the code of transformations on part of the code 
during one execution. Instead of random function can use some adduring one execution. Instead of random function can use some adaptation routines!aptation routines!



Conclusions

•• No sophisticated dynamic optimization/recompilation frameworks;No sophisticated dynamic optimization/recompilation frameworks;

•• Allows complex sequences of compiler or manual transformations Allows complex sequences of compiler or manual transformations at runat run--time; time; 

•• Uses simple lowUses simple low--overhead adaptation technique (for codes with regular and overhead adaptation technique (for codes with regular and 
irregular behaviour);irregular behaviour);

•• Combines manual and compiler transformations due to the sourceCombines manual and compiler transformations due to the source--toto--source source 
versioning approachversioning approach

•• Enables selfEnables self--tuning applications adaptable to program and system behaviour, tuning applications adaptable to program and system behaviour, 
and portable across different architecturesand portable across different architectures

•• Enables continuous optimizations across runs with different datEnables continuous optimizations across runs with different datasets, asets, 
transparently to a usertransparently to a user

•• Can be used for parallel heterogeneous computing (compilation wCan be used for parallel heterogeneous computing (compilation with different ith different 
ISA for CELL or GPUISA for CELL or GPU--like architectures or various accelerators)like architectures or various accelerators)

•• Reliable, secure,  with easy debuggingReliable, secure,  with easy debugging



Conclusions

However:However:

•• Still no optimization knowledge reuseStill no optimization knowledge reuse

•• Better placement of instrumentation for adaptation is neededBetter placement of instrumentation for adaptation is needed

•• Better dataset specialization is needed (for library adaptationBetter dataset specialization is needed (for library adaptation))



Machine learning based optimizations

OverviewOverview

•• Machine learning Machine learning -- what is it and why is it useful?what is it and why is it useful?

•• Predictive modelingPredictive modeling

•• Loop unrolling and Loop unrolling and inlininginlining

•• Attempt to generalize program optimizationsAttempt to generalize program optimizations

•• Limits and other uses of machine learningLimits and other uses of machine learning

•• Future work and summaryFuture work and summary



Failings of previous approaches

•• Before we have looked at techniques to overcome data dependent Before we have looked at techniques to overcome data dependent 
behavior and adaption to new processorsbehavior and adaption to new processors

•• However, we have not looked fundamentally at However, we have not looked fundamentally at process of designing a process of designing a 
compilercompiler

•• All rely on a All rely on a ““cleverclever”” algorithm inserted into the compiler that determines at algorithm inserted into the compiler that determines at 
compilecompile--time or runtime which optimizations to applytime or runtime which optimizations to apply

•• Iterative compilation goes beyond this with no a priori knowledgIterative compilation goes beyond this with no a priori knowledge but is not e but is not 
suitable for general compilations and does not adapt to changingsuitable for general compilations and does not adapt to changing datadata

•• What we want is a smart compiler that What we want is a smart compiler that adapts its strategy adapts its strategy to changes in to changes in 
program, data and processorprogram, data and processor



Machine learning as a solution

•• Well established area of AI, neural networks, genetic algorithmWell established area of AI, neural networks, genetic algorithms etc. but s etc. but 
what has AI got to do with compilation?what has AI got to do with compilation?

•• In a very simplistic sense machine learning can be considered asIn a very simplistic sense machine learning can be considered as
sophisticated form of curve fittingsophisticated form of curve fitting



Machine learning

•• The inputs are characteristics of the program and processor. OutThe inputs are characteristics of the program and processor. Outputs, the puts, the 
optimization function we are interested in, execution time poweroptimization function we are interested in, execution time power or code or code 
sizesize

•• Theoretically predict future behavior and find the best optimizaTheoretically predict future behavior and find the best optimizationtion



Global optimization and predictive modeling

•• For our purposes it is possible to consider machine learning as For our purposes it is possible to consider machine learning as global global 
optimizationoptimization and and predictive modelingpredictive modeling

•• Global optimization Global optimization tries to find the best point in a space. This is achieved tries to find the best point in a space. This is achieved 
by selecting new points, evaluating them and then based on accumby selecting new points, evaluating them and then based on accumulated ulated 
information selecting a new point as a potential optimuminformation selecting a new point as a potential optimum

•• Hill walking Hill walking and and genetic algorithms genetic algorithms are obvious examples. Very strong link are obvious examples. Very strong link 
with iterative compilationwith iterative compilation

•• Predictive modeling Predictive modeling learns about the optimizations space to build a model. learns about the optimizations space to build a model. 
Then uses this model to select the optimum point. Closely relateThen uses this model to select the optimum point. Closely related to global d to global 
optimizationoptimization



Predictive modeling

•• Predictive modeling techniques all have the property that they tPredictive modeling techniques all have the property that they try to learn ry to learn 
a model that describes the correlation between inputs and outputa model that describes the correlation between inputs and outputss

•• This can be a classification or a function or Bayesian probabiliThis can be a classification or a function or Bayesian probability ty 
distributiondistribution

•• Distinct training and test data. Compiler writers don't make thDistinct training and test data. Compiler writers don't make this distinction!is distinction!



Predictive modeling as a proxy

•• The model acts as a fast evaluator for program. Automates The model acts as a fast evaluator for program. Automates Soffa'sSoffa's
performance prediction framework and speeds up iterative compilaperformance prediction framework and speeds up iterative compilationtion

•• Nobody has done this yet! Feature selection and accuracy are maiNobody has done this yet! Feature selection and accuracy are main n 
problems!problems!



Training data

•• Crucial to this working is correct selection of Crucial to this working is correct selection of training datatraining data

•• The data has to be rich enough to cover the space of programs liThe data has to be rich enough to cover the space of programs likely to be kely to be 
encounteredencountered

•• If we wish to learn over different processors so that the systemIf we wish to learn over different processors so that the system can port can port 
then we also need sufficient coverage here toothen we also need sufficient coverage here too

•• In practice it is very difficult to formally state the space of In practice it is very difficult to formally state the space of possibly possibly 
interesting programsinteresting programs

•• Ideas include typical kernels and compositions of them. HierarchIdeas include typical kernels and compositions of them. Hierarchical ical 
benchmark suites could help herebenchmark suites could help here



Feature selection of programs

•• Crucial problem with machine learning is Crucial problem with machine learning is feature selectionfeature selection. Which features . Which features 
of a program are likely to predict it's eventual behavior?of a program are likely to predict it's eventual behavior?

•• In a sense, features should be a compact representation of a proIn a sense, features should be a compact representation of a program that gram that 
capture the essential performance related aspects and ignore thecapture the essential performance related aspects and ignore the irrelevantirrelevant

•• Clearly, the number of spaces in the program is unlikely to be sClearly, the number of spaces in the program is unlikely to be significant ignificant 
nor the user commentsnor the user comments

•• Compiler Compiler IRsIRs are a good starting point as they are condensed program are a good starting point as they are condensed program 
representationrepresentation

•• Loop nest depth, controlLoop nest depth, control--flow graph structure, recursion, pointer based flow graph structure, recursion, pointer based 
accesses, data structureaccesses, data structure



Supervised learning

•• Building a model based on given inputs and outputs is an exampleBuilding a model based on given inputs and outputs is an example of of 
classical supervised learningclassical supervised learning. We direct the system to find correlations . We direct the system to find correlations 
between selected input features and output behaviorbetween selected input features and output behavior

•• In fact In fact unsupervised learning unsupervised learning may be more useful in the long run. may be more useful in the long run. 
Generate a large number of examples and features and allow the sGenerate a large number of examples and features and allow the system to ystem to 
classify them into related groups with shared behaviorclassify them into related groups with shared behavior

•• This prevents missing important features and provide clues as toThis prevents missing important features and provide clues as to what what 
aspects of a program are performance determiningaspects of a program are performance determining

•• However, we need many more programs However, we need many more programs combinatoriallycombinatorially than features to than features to 
distinguish between themdistinguish between them



Space to learn over

• Formalization of compiler optimization has not been taken really seriously

• However, in order to utilize predictive modeling, we need a descriptions of 
the program space that allows discrimination between different choices

• Rather than just having a sophisticated model, what we want is a system 
that given a program automatically provides the best optimization

• To do this means that we must have a good description of the 
transformation space

• The shape of the optimization space will be critical for learning. Clearly 
linear regression will not fit the spaces seen before



Which techniques work?

•• Short answer: No one knows!Short answer: No one knows!

•• It depends on the structure of the problem space (distribution oIt depends on the structure of the problem space (distribution of minima) f minima) 
and representation of the problemand representation of the problem

•• One problem particular to compilation is that feature inputs varOne problem particular to compilation is that feature inputs vary in size: y in size: 
length of program, length of transformation sequence, order of length of program, length of transformation sequence, order of 
transformations, etctransformations, etc

•• Also we have no agreed way of representing our problem. Several Also we have no agreed way of representing our problem. Several of the of the 
following examples have used different techniquesfollowing examples have used different techniques

•• Safe to say that the level of ML sophistication is low. Seems thSafe to say that the level of ML sophistication is low. Seems that currently at currently 
compiler writers tend to try simple things first without too muccompiler writers tend to try simple things first without too much h mathsmaths
(though this is gradually changing with the (though this is gradually changing with the polyhedral transformationspolyhedral transformations being being 
added to the mainline GCC and XLS compilers) !added to the mainline GCC and XLS compilers) !



Learning to unroll

•• MonsifortMonsifort uses machine learning to determine whether or not it is uses machine learning to determine whether or not it is 
worthwhile unrolling a loopworthwhile unrolling a loop

•• Rather than building a model to determine the performance benefiRather than building a model to determine the performance benefit of t of 
loop unrolling, try to classify whether or not loop unrolling isloop unrolling, try to classify whether or not loop unrolling is worthwhileworthwhile

•• For each training loop, loop unrolling was performed and speedupFor each training loop, loop unrolling was performed and speedup
recordedrecorded

•• This output was translated into This output was translated into ““goodgood””, , ““badbad”” or or ““no changeno change””

•• The loop features were then stored alongside the output ready foThe loop features were then stored alongside the output ready for r 
learninglearning



Learning to unroll

• Features used were based on inner loop characteristics

• The model induced is a partitioning of the feature space. The space was 
partitioned into those sections where unrolling is good, bad or unchanged

• This division was hyperplanes in the feature space that can easily be 
represented by a decision tree

• This learnt model is the easily used at compile time. Extract the features of 
the loop and see which section they belong too

• Although easy to construct requires regions in space to be convex. Not true 
for combined transformations



Learning to unroll

•• Features try to capture structure that may affect unrolling deciFeatures try to capture structure that may affect unrolling decisionssions

•• Again allows programs to be mapped to fixed feature vectorAgain allows programs to be mapped to fixed feature vector

•• Feature selection can be guided by metrics used in existing handFeature selection can be guided by metrics used in existing hand--written written 
heuristicsheuristics

featuresfeatures



Results

•• Classified examples give correct result in 85% cases. Better at Classified examples give correct result in 85% cases. Better at picking picking 
negative cases due to bias in training setnegative cases due to bias in training set

•• Gave an average 4% and 6% reduction in execution time on Gave an average 4% and 6% reduction in execution time on UltrasparcUltrasparc
and IA64 compared to 1and IA64 compared to 1

•• However g77 compiler is an easy compiler to improve upon at thatHowever g77 compiler is an easy compiler to improve upon at that timetime

•• Basic approach Basic approach -- unroll factor not consideredunroll factor not considered



Meta-compilation

•• Name comes from optimizing a heuristic rather than optimizing a Name comes from optimizing a heuristic rather than optimizing a programprogram

•• Stephenson et al 2003 used Stephenson et al 2003 used genetic programming genetic programming to tune to tune hyperblockhyperblock
selectionselection, , register allocationregister allocation, and , and data data prefetchingprefetching within the within the Trimaran'sTrimaran's
IMPACT compilerIMPACT compiler

•• Represent heuristic as a parse tree. Apply mutation and cross ovRepresent heuristic as a parse tree. Apply mutation and cross over to a er to a 
population of parse trees and measure fitness.population of parse trees and measure fitness.

•• Crossover = swap nodes from 2 random parse treesCrossover = swap nodes from 2 random parse trees

•• Mutate randomly: selected a node and replace with a random expreMutate randomly: selected a node and replace with a random expressionssion



Results

•• Two of the preTwo of the pre--existing heuristics were not well implementedexisting heuristics were not well implemented

•• For For hyperblockhyperblock selection speedup of 1.09 on test setselection speedup of 1.09 on test set

•• For data For data prefetchingprefetching the results are worse the results are worse -- just 1.01 speedupjust 1.01 speedup

•• The authors even admit that turning off data The authors even admit that turning off data prefetchingprefetching completely is completely is 
preferable and reduces many of their gainspreferable and reduces many of their gains

•• The third optimization, register allocation is better implementeThe third optimization, register allocation is better implemented but only d but only 
able to achieve on average a 2% increase over the manually tunedable to achieve on average a 2% increase over the manually tuned heuristicheuristic

•• GP is not a focused technique, IMPACT is not of a commercial quaGP is not a focused technique, IMPACT is not of a commercial qualitylity



Learning over UTF

•• Shun (2004) uses Pugh's UTF framework to search for good Java Shun (2004) uses Pugh's UTF framework to search for good Java 
optimizationsoptimizations

•• Space of optimization to learn included entire UTF. Training datSpace of optimization to learn included entire UTF. Training data gathered a gathered 
by using a smart iterative searchby using a smart iterative search

•• Then using a similar feature extraction to Then using a similar feature extraction to MonsifortMonsifort classify all found classify all found 
resultsresults

•• Uses nearest Uses nearest neighbourneighbour based learning able to achieve 70% of the based learning able to achieve 70% of the 
possible performance found using iterative compilation on crosspossible performance found using iterative compilation on cross--validated validated 
test datatest data

•• Larger experimental set needed to validate results. Going beyondLarger experimental set needed to validate results. Going beyond loop loop 
based transformations for Javabased transformations for Java



Learning to inline

•• InliningInlining is the number one optimization in JIT compilers. Many papers is the number one optimization in JIT compilers. Many papers 
from IBM on adaptive algorithms to get it right in Jikesfrom IBM on adaptive algorithms to get it right in Jikes

•• Can we use machine learning to improve this highly tuned heuristCan we use machine learning to improve this highly tuned heuristic? ic? 
Tough problem. Similar to metaTough problem. Similar to meta--optimization goaloptimization goal

•• Cavazos (2005) looked at automatically determining inline heurisCavazos (2005) looked at automatically determining inline heuristics tics 
under different under different scenariosscenarios

•• Opt Opt vsvs Adapt Adapt -- different user compiler options. Total time different user compiler options. Total time vsvs run time run time vsvs a a 
balance balance -- compile time is part of runtimecompile time is part of runtime

•• x86 x86 vsvs PPC PPC -- can the strategy port across platformcan the strategy port across platform



Learning a heuristic

•• Focus on tuning parameters of an existing heuristic rather thanFocus on tuning parameters of an existing heuristic rather than
generating a new one from scratchgenerating a new one from scratch

•• Features are Features are dynamicdynamic. Learn off. Learn off--line and applied heuristic online and applied heuristic on--lineline



Parameters found

• Considerable variation across scenario

• For instance on x86, Bal and Total similar except for the CallerMaxSize

• A priori these values could not be predetermined



Learning to inline

• Initially tried rule induction - failed miserably. Not clear at this stage why

• Difficult to determine whether optimization has impact

• Next used a genetic algorithm to find a good heuristic

• For each scenario asked the GA to find the best geometric mean over the 
training set. Using search for learning

• Training set used - Specjvm98, test set - DaCapo including Specjbb

• Focused learning on choosing the right numeric parameters of a fixed 
heuristic

• Applied this to a test set comparing against IBM heuristic



More general approaches?More general approaches?



Static characterization of programs

F. Agakov, E. Bonilla, F. Agakov, E. Bonilla, J.CavazosJ.Cavazos, , B.FrankeB.Franke, G. Fursin, M.F.P. O'Boyle, , G. Fursin, M.F.P. O'Boyle, J.ThomsonJ.Thomson, M. Toussaint and C.K.I. Williams. Using , M. Toussaint and C.K.I. Williams. Using 
Machine Learning to Focus Iterative Optimization. Machine Learning to Focus Iterative Optimization. Proceedings of the 4th  Annual International Symposium on Code Proceedings of the 4th  Annual International Symposium on Code 
Generation and Optimization (CGO)Generation and Optimization (CGO), New York, NY, USA, March 2006, New York, NY, USA, March 2006

•• Embedded systems applicationEmbedded systems application

•• UTDSP benchmarks: compute intensive DSPUTDSP benchmarks: compute intensive DSP

•• AMD Au1500, AMD Au1500, gccgcc 3.2.1, 3.2.1, --O3O3

•• TI C6713, TI compiler v2.21, TI C6713, TI compiler v2.21, --O3O3

•• Exhaustively enumerated optimization search spaceExhaustively enumerated optimization search space

•• 14 transformations selected14 transformations selected

•• all combinations of length 5 evaluatedall combinations of length 5 evaluated

•• Allows comparison of techniquesAllows comparison of techniques

•• How near the minima each technique approachesHow near the minima each technique approaches

•• Rate of improvementRate of improvement

•• Characterization of the spaceCharacterization of the space



Static characterization of programs

Search space = Search space = 396000396000
program transformationsprogram transformations

Predict Predict 2..102..10 best best 
transformations from this transformations from this 
space based on program space based on program 

features and previous features and previous 
optimization experienceoptimization experience

Focusing search (offFocusing search (off--line training):line training):

•• Independent identically distributed (IID) modelIndependent identically distributed (IID) model
•• Markov modelMarkov model

Predicting best transformation for a new program:Predicting best transformation for a new program:
•• Static featuresStatic features
•• Nearest neighbors classifierNearest neighbors classifier



Dynamic characterization of programs

Previously we used Previously we used static code featuresstatic code features to obtain good to obtain good 
optimizations for new programsoptimizations for new programs

However, it is difficult or impossible to characterize However, it is difficult or impossible to characterize 
program runprogram run--time behaviortime behavior on modern complex on modern complex 
architecture using only static code featuresarchitecture using only static code features

Performance counters provide a Performance counters provide a compact summary of compact summary of 
a programa program’’s dynamic behaviors dynamic behavior

How to use them to select good optimization settings?How to use them to select good optimization settings?

John Cavazos,John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.OGrigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’’Boyle and Olivier Temam. Boyle and Olivier Temam. 
Rapidly Selecting Good Compiler Optimizations using Performance Rapidly Selecting Good Compiler Optimizations using Performance Counters. Proceedings of the 5Counters. Proceedings of the 5th  th  
Annual International Symposium on Code Generation and OptimizatiAnnual International Symposium on Code Generation and Optimization (CGO), San Jose, USA, March on (CGO), San Jose, USA, March 
20072007



General optimizations

Predictive modeling using logistic regressionPredictive modeling using logistic regression



General optimizations

Using modelsUsing models



Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average 
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Performance counter values for 181.mcf compiled with -O0 relative to the average 
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Problem: Problem: 
greater number of memory accesses per instruction than averagegreater number of memory accesses per instruction than average
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Dynamic characterization of programsDynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average 

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Solving all performance issues one by one is slow and can be Solving all performance issues one by one is slow and can be 
inefficient due to their noninefficient due to their non--linear dependencies linear dependencies ……

CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME !CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME !



Experimental Results

Performance of SPEC INT 2000 Benchmarks using static code 
features and dynamic features



Machine learning for DSE
Speeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space Exploration

Problems:Problems:
–– Developing an optimizing compiler for new architecture is difficDeveloping an optimizing compiler for new architecture is difficult ult 

particularly when only simulator is availableparticularly when only simulator is available

–– Tuning such compiler requires many runsTuning such compiler requires many runs

–– Simulators are orders of magnitude slower than real processorsSimulators are orders of magnitude slower than real processors

–– Therefore compiler tuning is highly restrictedTherefore compiler tuning is highly restricted

Goal:Goal:
develop a technique to automatically build a performance model fdevelop a technique to automatically build a performance model for predicting or predicting 
the impact of program transformations on any architecture, basedthe impact of program transformations on any architecture, based on a limited on a limited 
number of automatically selected runsnumber of automatically selected runs

John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, MiJohn Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael F.P. O'Boyle, Grigori Fursin chael F.P. O'Boyle, Grigori Fursin 
and Olivier Temam. Automatic Performance Model Construction for and Olivier Temam. Automatic Performance Model Construction for the Fast Software Exploration of the Fast Software Exploration of 
New Hardware Designs. International Conference on Compilers, ArcNew Hardware Designs. International Conference on Compilers, Architecture, And Synthesis For hitecture, And Synthesis For 
Embedded Systems (CASES 2006), Seoul, Korea, October 2006Embedded Systems (CASES 2006), Seoul, Korea, October 2006



Machine learning for DSE

FeaturesFeatures--based modelbased model
Input:Input: static features extracted from the transformed program static features extracted from the transformed program 

at the source levelat the source level
Output:Output: program speedupprogram speedup
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ReactionsReactions--based modelbased model
Input:Input: speedups on canonical transformation sequencesspeedups on canonical transformation sequences
Output:  Output:  transformation sequence speeduptransformation sequence speedup



Machine learning for DSE

Reliable performance model after a few probes Reliable performance model after a few probes →→ fast searchfast search

Speeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space Exploration



Conclusions

• We believe that machine learning will revolutionize compiler optimization 
and will become mainstream within a decade for both compiler 
optimizations, run-time adaptation, parallelization and architecture design 
space exploration

• However, it is not a panacea, solving all our problems

• Fundamentally, it is an automatic curve fitter. We still have to choose the 
parameters to fit and the space to optimize over

• Complexity of space makes a big difference. Tried using Gaussian process 
predicting on PFDC'98 spaces - worse than random selection…

• Much remains to be done - fertile research area

Continuous Collective CompilationContinuous Collective Compilation
http://gcchttp://gcc--ccc.sourceforge.netccc.sourceforge.net
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