
Systematizing tuning of computer systems using

crowdsourcing and statistics

Grigori Fursin

INRIA, France

HPSC 2013, Taiwan

March 2013

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 2 / 73

Messages

1st talk (Wednesday)

Systematizing tuning of computer systems

using crowdsourcing and statistics

• Revisiting current design and optimization methodology

• Leveraging experience and computer resources of multiple users

• Using predictive modelling and data mining to improve computer systems

2nd talk (Friday)

Collective Mind: novel methodology, framework

and repository to crowdsource auto-tuning

• New plugin-based extensible infrastructure and repository for collaborative

analysis and tuning of computer systems - will be released in May 2013

• “Big data” enables cooperation between architecture, compiler, OS and

application designers and mathematicians

• Examples of auto-tuning and predictive modeling for numerical kernels

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 3 / 73

Motivation: back to 1993

Semiconductor neural element -
possible base of neural computers

Modeling and understanding
brain functions

• Slow
• Unreliable
• Costly

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 4 / 73

Solution

Motivation: back to basics

Task

Result

End users

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 5 / 73

Solution

Motivation: back to basics

Decision
(depends on user

requirements)

Result

Available choices
(solutions)

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

End users

Task

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 6 / 73

Solution

Motivation: back to basics

Decision
(depends on user

requirements)

Result

Available choices
(solutions)

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Should provide choices
and help with decisions

Hardware and
software designers

End users

Task

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 7 / 73

Solution

Motivation: back to basics

Decision
(depends on user

requirements)

Result

Available choices
(solutions)

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Service/application
providers

(supercomputing,
cloud computing,
mobile systems)

Should provide choices
and help with decisions

Hardware and
software designers

End users

Task

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 8 / 73

Available solutions: hardware

Companies compete hard to deliver many solutions with various characteristics:
performance, power consumption, size, bandwidth, response time, reliability, cost …

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 9 / 73

Available solutions: software

Software developers try to keep pace and produce various
algorithms, programming models, languages, analysis tools, compilers,

run-time systems, databases, etc.

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1
ICC 12.0 ICC 12.1

LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9
LLVM 3.0

Phoenix

MVS

XLC

Open64

Jikes
Testarossa

OpenMP MPI
HMPP

OpenCL CUDA gprof prof
perf oprofile

PAPI TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level

TBB

MKL
ATLAS

program-
level

function-
level Codelet

loop-level hardware
counters

IPA
polyhedral

transformations
LTO

threads

process

pass
reordering

run-time
adaptation

per phase
reconfiguration

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 10 / 73

Solutions

Challenges

Task

Result

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 11 / 73

Solutions

Challenges

Task

Result

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.0

Phoenix

MVS XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA
gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level TBB

MKL

ATLAS program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA

polyhedral
transformations

LTO
threads process

pass
reordering

run-time
adaptation

per phase
reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

cores

processors

threads

power
consumption execution time

reliability

1) Rising complexity of computer systems:
 too many design and optimization choices

2) Performance is not anymore the only
requirement:

multiple user objectives vs choices
benefit vs optimization time

3) Complex relationship and interactions
between ALL software and hardware
components.

4) Too many tools with non-unified interfaces
changing from version to version:

technological chaos

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 12 / 73

Solutions

Challenges

Task

Result

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.0

Phoenix

MVS XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA
gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level TBB

MKL

ATLAS program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA

polyhedral
transformations

LTO
threads process

pass
reordering

run-time
adaptation

per phase
reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

cores

processors

threads

power
consumption execution time

reliability

Result:

• finding the right solution for end-user is
extremely challenging

• everyone is lost in choices

• dramatic increase in development time

• low ROI

• underperforming systems

• waste of energy

• ad-hoc, repetitive and error-prone
manual tuning

• slowing innovation in science and
technology

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 13 / 73

Solutions

Challenges

Task

Result

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.0

Phoenix

MVS XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA
gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level TBB

MKL

ATLAS program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA

polyhedral
transformations

LTO
threads process

pass
reordering

run-time
adaptation

per phase
reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

cores

processors

threads

power
consumption execution time

reliability

Result:

• finding the right solution for end-user is
extremely challenging

• everyone is lost in choices

• dramatic increase in development time

• low ROI

• underperforming systems

• waste of energy

• ad-hoc, repetitive and error-prone
manual tuning

• slowing innovation in science and
technology

Understanding and modeling of the overall
relationship between end-user algorithms,
applications, compiler optimizations,
hardware designs, data sets and run-time
behavior became simply infeasible!

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 14 / 73

Treat
computer

system as a
black box

Attempts to solve these problems: auto-tuning

Task

Result

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm

Use auto-tuning:

Explore multiple
choices empirically:

learn behavior of
computer systems
across executions

Covered all
components in the
last 2 decades and

showed high
potential but …

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 15 / 73

• Optimization spaces are large and non-linear with many local minima

• Exploration is slow and ad-hoc (random, genetic, some heuristics)

• Only a few benchmarks are considered

• Often the same (one) dataset is used

• Only part of the system is taken into account
(rarely reflect behavior of the whole system)

• No knowledge sharing

Auto-tuning shows high potential for nearly 2 decades but still far from
the mainstream in production environments.

Why?

Attempts to solve these problems: auto-tuning

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 16 / 73

Treat
computer

system as a
black box

Task

Result

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm
Use machine

learning to speed
up exploration

Apply predictive
modeling to suggest
profitable solutions
based on properties

of a task and a
system

Covered all
components in the

last decade and
showed high

potential but …

0

2

4

6

Attempts to solve these problems: machine learning

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 17 / 73

• Selection of machine learning models and right properties is non-trivial:
ad-hoc in most of the cases

• Limited training sets

• Only part of the system is taken into account
(rarely reflect behavior of the whole system)

• No knowledge sharing

Machine learning (classification, predictive modeling) shows high
potential during past decade but still far from the mainstream.

Why?

Attempts to solve these problems: machine learning

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 18 / 73

Treat
computer

system as a
black box

Task

Result

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm

Co-design:

Explore choices and
behavior of the
whole system.

Attempts to solve these problems: co-design

Showed high
potential in the last

years but …

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 19 / 73

• Even more choices to explore and analyze

• Often impossible to expose tuning choices or obtain characteristics at all levels

• Limited training sets

• Still no knowledge sharing

Co-design is currently a buzz word and a hot research topic

but still far from the mainstream.

Why?

Attempts to solve these problems: co-design

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 20 / 73

Can we crowdsource auto-tuning? My main focus since 2004

Can we leverage their experience and computational resources?

Can we transparently distribute optimization
and learning across many users?

Millions of users run realistic applications on different architectures with
different datasets, run-time systems, compilers, optimizations!

Got stuck with a limited number of benchmarks, datasets,
architectures and a large number of optimizations and generated data

- needed dramatically new approach!

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 21 / 73

Challenges

User

application

Hot function

How can we evaluate optimizations in a realistic environment without
complex recompilation frameworks and without source code?

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 22 / 73

Challenges

User
application

Hot function

Oref

First problem:
need reference run with the same dataset

User
application

Hot function

Onew

Speed up

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 23 / 73

Challenges

User
application

Hot function

Oref

3
0

 r
ep

et
it

io
n

s

Second problem: variation in execution time due to different run-time states

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 24 / 73

Challenges

User
application

Hot function

Oref

Second problem: variation in execution time due to different run-time states

3
0

 r
ep

et
it

io
n

s

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 25 / 73

Challenges

User
application

Hot function

Oref

3
0

 r
ep

et
it

io
n

s

How can we evaluate some optimization in a realistic environment?

Second problem: variation in execution time due to different run-time states

(parallel processes, adaptive scheduling, pinning, cache state, bus state,
frequency changes, etc)

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 26 / 73

Our approach: static multiversioning

Application

Select most time consuming code sections

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 27 / 73

Our approach: static multiversioning

Application

Create multiple versions of time
consuming code sections

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 28 / 73

Our approach: static multiversioning

Application

Add monitoring routines

monitor_start

monitor_stop

monitor_start

monitor_stop

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 29 / 73

Our approach: static multiversioning

Application

Apply various transformations over clones
of code sections

monitor_start

monitor_stop

monitor_start

monitor_stop

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 30 / 73

Our approach: static multiversioning

Application

Apply various transformations over clones
of code sections

Select global or fine-grain internal compiler (or algorithm) optimizations

monitor_start

monitor_stop

monitor_start

monitor_stop

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 31 / 73

Our approach: static multiversioning

Application

Apply various transformations over clones
of code sections

monitor_start

monitor_stop

monitor_start

monitor_stop

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 32 / 73

Application

Apply various transformations over clones
of code sections

Differerent ISA;
manual transformations, etc

Our approach: static multiversioning

monitor_start

monitor_stop

monitor_start

monitor_stop

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 33 / 73

Application

Final instrumented program

Our approach: static multiversioning

monitor_start

monitor_stop

monitor_start

monitor_stop

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 34 / 73 G. Fursin et. al. “A Practical Method for Quickly Evaluating Program Optimizations” HiPEAC 2005

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function calls

IP
C

IPC for subroutine resid of benchmark mgrid across calls

Observations: program execution phases

• Define stability by 3 consecutive or periodic executions
with the same IPC

• Predict further occurrences with the same IPC
(using period and length of regions with stable performance)

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 35 / 73 G. Fursin et. al. “A Practical Method for Quickly Evaluating Program Optimizations” HiPEAC 2005

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function calls

IP
C

• Define stability by 3 consecutive or periodic executions
with the same IPC

• Predict further occurrences with the same IPC
(using period and length of regions with stable performance)

period=7, length=2

Observations: program execution phases

IPC for subroutine resid of benchmark mgrid across calls

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 36 / 73

Observations: program execution phases

Some programs exhibit stable behavior

0

0.02

0.04

0.06

0.08

0.1

0.12

1 42 70 98 213 2025

function calls

ti
m

e
 (

s
e
c
)

startup (phase detection) or end of the optimization process (best option found)

evaluation of 1 option

1 2 3 1 2 3

1) Consider clone with new optimization is evaluated after 2 consecutive executions

of the code section with the same performance

2) Ignore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 37 / 73

0

0.02

0.04

0.06

0.08

0.1

0.12

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

ti
m

e
 (

s
e
c
)

Observations: program execution phases

• Can transparently to end-user evaluate multiple optimizations

• Statically enable adaptive binaries (that can react to dataset or run-time

state changes without any need for JIT or other complex frameworks)

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 38 / 73

0

0.02

0.04

0.06

0.08

0.1

0.12

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

ti
m

e
 (

s
e
c
)

• Grigori Fursin et al. A Practical Method For Quickly Evaluating Program Optimizations. Proceedings of the 1st International

Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS, pages 29-46,

Barcelona, Spain, November 2005 Highest ranked paper

• Can transparently to end-user evaluate multiple optimizations

• Statically enable adaptive binaries (that can react to dataset or run-time

state changes without any need for JIT or other complex frameworks)

Transparent monitoring and adaptation of static programs

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 39 / 73

Observations: random behavior

Randomly select versions at run-time

Monitor speedup variation over time

jpeg decoder, GCC 4.5, Intel architecture

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 40 / 73

Transparently measuring the impact of optimizations

Dataset1

DatasetN

Execution

Intercept exit() and call
Collective Stats Handler

Prolog of the time consuming code

Start profiling and

Randomly select version (original
or clone)

 Cloned code

(Optimizations2)

Stop profiling

Original code

(Optimizations1)

 Epilog of the time consuming code

Binary

- Profiling Routines

- Collective Stats

- Unique IDs

Function clones
with different
optimizations

Collective Compiler

GCC Interface:
- create code clones
- Apply optimizations
per clone
- intercept
main()and add
auxiliary routines

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 41 / 73

Transparently measuring the impact of optimizations

Dataset1

DatasetN

Execution

Intercept exit() and call
Collective Stats Handler

Prolog of the time consuming code

Start profiling and

Randomly select version (original
or clone)

 Cloned code

(Optimizations2)

Stop profiling

Original code

(Optimizations1)

 Epilog of the time consuming code

Collective Compiler Binary

- Profiling Routines

- Collective Stats

- Unique IDs

Function clones
with different
optimizations

GCC Interface:
- create code clones
- Apply optimizations
per clone
- intercept
main()and add
auxiliary routines

Network Web Server

Collective Optimization
Web Services

- Register events
- Query database
- Get statistics
 …

Collective Optimization
Database

- COMPILATION table
- EXECUTION table
- AUXILARY tables

MySQL

cTuning.org

Initiate recompilation if better optimization setting
is suggested based on Collective Knowledge

UserX

ProgramA

ArchB

UserY

ProgramC

ArchD

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 42 / 73

Speeding up research (2005-cur.)

• Grigori Fursin et al. Collective Optimization: A Practical Collaborative Approach. ACM Transactions on Architecture and

Code Optimization (TACO), December 2010, Volume 7, Number 4, pages 20-49

Concept is included into EU HiPEAC research vision 2012-2020

• Grigori Fursin et al. Collective optimization. Proceedings of the International Conference on High Performance Embedded

Architectures & Compilers (HiPEAC 2009), Paphos, Cyprus, January 2009

• Can observe behavior and evaluate optimizations in various GRID

servers, cloud services, desktops, etc …

• multiple benchmarks/datasets

• multiple architectures

• multiple compilers

• multiple optimizations

Opened up many interesting research opportunities,

particularly for data mining and predictive modeling!

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 43 / 73

Collaborative exploration of large optimization spaces

Multi-objective optimizations (depend on user scenarios):

HPC and desktops: improving execution time
Data centers and real-time systems: improving execution and compilation time

Embedded systems: improving execution time and code size

Now additional requirement: reduce power consumption

susan corners kernel

Intel Core2

GCC 4.4.4
similar results on ICC 11.1

baseline opt=-O3
~100 optimizations

random combinations
(50% probability)

Nowadays used for
auto-parallelization,

reduction of contentions,
reduction of communication

costs, etc.

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 44 / 73

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 10 20 30 40 50 60 70 80

P
ro

b
a
b

il
it

y

Optimizations

Start: 50% probability to select optimization (uniform distribution)

Online focused exploration and learning

Avoiding collection of huge amount of data -

filtering (compacting) and learning space on the fly

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 45 / 73

Current random selection of optimizations reduced execution time:

reduce probabilities of the selected optimizations

Online focused exploration and learning

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 46 / 73

Current random selection of optimizations improved execution time:

reward probabilities of the selected optimizations

Online focused exploration and learning

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 47 / 73

A – Break up large expression trees

B – Value propagation

C – Hoisting of loop invariants

D – Loop normalization

E – Loop unrolling

F – Mark constant variables

G – Dismantle array instructions

H – Eliminating copies

A B
C D

E

F G H

“good optimizations” across all programs:

Faster then traditional search (~50 iterations).

Can stuck in local minima

Speedups 1.1-2x. Sometimes better to reduce

Intel compiler optimization level!

Online focused exploration and learning

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 48 / 73

14 transformations, sequences of length 5, search space = 396000

• F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint and C.K.I. Williams. Using

Machine Learning to Focus Iterative Optimization. Proceedings of the 4th Annual International Symposium on Code Generation

and Optimization (CGO), New York, NY, USA, March 2006

Online focused exploration and learning

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 49 / 73

AMD platform, GCC 4.5, image corner detection (susan_corners)

Online probabilistic exploration

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 50 / 73

Reactions to optimizations across multiple datasets

http://ctuning.org/cbench

MiBench, 20 datasets per benchmark, 200/1000 random combination of

Open64 (GCC) compiler flags, 5 months of experiments

jpeg_d

(clustering)

dijkstra

(not sensitive)

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 51 / 73

Unifying adaptation of statically compiled programs

…

Statically-compiled adaptive binaries and libraries

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Step 1

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 52 / 73

…

Representative set of versions for the following optimization cases to minimize
execution time, power consumption and code-size across all available datasets:

 optimizations for different datasets
 optimizations/compilation for different architectures (heterogeneous or

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the
same ISA with extensions such as 3dnow, SSE, etc or virtual environments)

 optimizations for different program phases or different run-time environment
behavior

Statically-compiled adaptive binaries and libraries

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Step 2

Unifying adaptation of statically compiled programs

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 53 / 73

Extract
dataset
features

Selection mechanism optimized for low run-
time overhead

…

Representative set of versions for the following optimization cases to minimize
execution time, power consumption and code-size across all available datasets:

 optimizations for different datasets
 optimizations/compilation for different architectures (heterogeneous or

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the
same ISA with extensions such as 3dnow, SSE, etc or virtual environments)

 optimizations for different program phases or different run-time environment
behavior

Statically-compiled adaptive binaries and libraries

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Machine learning
techniques to find
mapping between
different run-time

contexts and
representative

versions

Step 3

Unifying adaptation of statically compiled programs

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 54 / 73

Extract
dataset
features

Monitor run-time behavior or architectural
changes (in virtual, reconfigurable or

heterogeneous environments) using timers
or performance counters

Selection mechanism optimized for low run-
time overhead

…

Representative set of versions for the following optimization cases to minimize
execution time, power consumption and code-size across all available datasets:

 optimizations for different datasets
 optimizations/compilation for different architectures (heterogeneous or

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the
same ISA with extensions such as 3dnow, SSE, etc or virtual environments)

 optimizations for different program phases or different run-time environment
behavior

Statically-compiled adaptive binaries and libraries

Machine learning
techniques to find
mapping between
different run-time

contexts and
representative

versions

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Dynamic

Unifying adaptation of statically compiled programs

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 55 / 73

Online tuning: adaptive scheduling

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 56 / 73

• Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho Navarro. Predictive runtime code scheduling

for heterogeneous architectures. Proceedings of the International Conference on High Performance Embedded Architectures &

Compilers (HiPEAC 2009), Paphos, Cyprus, January 2009

Online tuning: adaptive scheduling

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 57 / 73

Online tuning: adaptive scheduling

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 58 / 73

Online tuning: adaptive scheduling

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 59 / 73

Optimization knowledge reuse across programs

Program
Datasets Architectures

Datasets
Datasets

Architectures
Architectures

Architectures
Architectures

Started systematizing knowledge per program across datasets and architectures

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 60 / 73

How to reuse knowledge among programs?

Program
Datasets Architectures

Datasets
Datasets

Architectures
Architectures

Architectures
Architectures

Started systematizing knowledge per program across datasets and architectures

Program
Program

Program

Optimization knowledge reuse across programs

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 61 / 73

1) Add as many various features as possible (or use expert knowledge):

 MILEPOST GCC with Interactive Compilation Interface:

ft1 - Number of basic blocks in the method
 …
ft19 - Number of direct calls in the method
ft20 - Number of conditional branches in the method
ft21 - Number of assignment instructions in the method
ft22 - Number of binary integer operations in the method
ft23 - Number of binary floating point operations in the method
ft24 - Number of instructions in the method
…
ft54 - Number of local variables that are pointers in the method
ft55 - Number of static/extern variables that are pointers in the method

2) Correlate features and objectives in cTuning using nearest neighbor classifiers, decision trees, SVM,
fuzzy pattern matching, etc.

3) Given new program, dataset, architecture, predict behavior based on prior knowledge!

Data mining and machine learning

 Code patterns:
for F

 for F

 for F

 …

 load … L

 mult … A

 store … S

 …

Collecting data from multiple users in a unified way allows to apply various data mining
(machine learning) techniques to detect relationship between the behaviour and features

of all components of the computer systems

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 62 / 73

Nearest-neighbour classifier

Example: Euclidean distance based on static program
features normalized by number of instructions

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 63 / 73

Optimization prediction

Grigori Fursin et al. MILEPOST GCC: machine learning enabled self-tuning compiler.
International Journal of Parallel Programming (IJPP), June 2011, Volume 39, Issue 3, pages 296-327

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 64 / 73

Most informative Performance Counters

1) L1_TCA 2) L1_DCH 3) TLB_DM

4) BR_INS 5) RES_STL 6) TOT_CYC

7) L2_ICH 8) VEC_INS 9) L2_DCH

10) L2_TCA 11) L1_DCA 12) HW_INT

13) L2_TCH 14) L1_TCH 15) BR_MS

Analysis of the importance of the performance counters.

The data contains one good optimization sequence per benchmark.

Calculating mutual information between a subset of the performance

counters and good optimization sequences

Principle Component Analysis:

• John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O'Boyle and Olivier Temam. Rapidly Selecting Good

Compiler Optimizations using Performance Counters. Proceedings of the 5th Annual International Symposium on Code Generation

and Optimization (CGO), San Jose, USA, March 2007

Dynamic features

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 65 / 73

And much more …

• Analysis and detection of contentions in multi-core systems with
shared cache

• Fast CPU/memory bound detection through breaking code
semantics

• Software/hardware co-design (predicting better architecture
designs)

• Performance/power balancing (through frequency variation)

• Decomposition of large applications into codelets for performance
modeling

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 66 / 73

• Used in MILEPOST project (2007-2009) by IBM, CAPS, University of Edinburgh, INRIA to
build first public machine-learning based compiler

• Opened for public access in 2009 to continue collaborative R&D

Public Collective Tuning Portal (cTuning.org)

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 67 / 73

Share

Explore

Model

Discover

Reproduce

Extend

Have fun!

Enabling reproducibility of results (new publication model)

Grigori Fursin et al. MILEPOST GCC: machine learning enabled self-tuning compiler.
International Journal of Parallel Programming (IJPP) , June 2011, Volume 39, Issue 3, pages 296-327

Substitute many tuning pragmas just with one that is converted into combination of optimizations:
#ctuning-opt-case 24857532370695782

Accepted as an EU HiPEAC theme (2012-2016)

http://ctuning.org/wiki/index.php/Special:CDatabase?request=view_opt_case&opt_case=24857532370695782

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 68 / 73

What have we learnt from cTuning1

It’s fun working with the community!

Some comments about MILEPOST GCC from Slashdot.org:

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008. Human decisions are
removed from compilation. GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic,
they try to pull the plug. GCC strikes back…

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 69 / 73

What have we learnt from cTuning1

It’s fun working with the community!

Some comments about MILEPOST GCC from Slashdot.org:

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008. Human decisions are
removed from compilation. GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic,
they try to pull the plug. GCC strikes back…

Not all feedback is positive - helps you learn, improve tools
and motivate new research directions!

Community was interested to validate and improve techniques!

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 70 / 73

Community is very interested in open “big data” for collaborative R&D

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x
GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1

LLVM 2.6
LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.1

Phoenix

MVS XLC

Open64

Jikes

Testarossa

OpenMP

MPI

HMPP

OpenCL

CUDA

gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier

scheduling

algorithm-level

TBB

MKL

ATLAS program-level

function-level

Codelet

loop-level
hardware
counters

IPA

polyhedral
transformations

LTO

threads

process pass reordering

run-time adaptation

per phase
reconfiguration

cache size

frequency
bandwidth

HDD size

TLB

ISA

memory size

cores processors

threads

power consumption

execution time reliability

Current state of computer engineering

likwid

Classification,
predictive
modeling

Optimal
solutions

Systematization and unification
of collective knowledge

(big data)

“crowd”

Collaborative Infrastructure and repository
for continuous online learning

End-user
task

Result

Quick, non-reproducible hack?
Ad-hoc heuristic?

Quick publication?
Waste of expensive resources

and energy?

cTuning.org collaborative
approach

Continuous systematization and
unification of design and

optimization of computer systems

Extrapolate collective knowledge to build faster and more power efficient
computer systems to continue innovation in science and technology!

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 71 / 73

Now have public repository, tools, benchmarks, datasets
and methodology that can help:

Academia (students and researchers):

• Instead of loosing time on developing tools for ever changing environments,
focus on statistical, data mining and machine learning techniques to:

• unify program optimization, design space exploration, run-time adaptation
• detect important characteristics of computer systems
• detect representative benchmarks and data sets
• evaluate multiple machine learning algorithms to predict optimizations or
hardware designs or dynamic multi-objective adaptation (SVM, decision
trees, hierarchical modeling, etc)

Industry:

• restore confidence in academic research due to reproducibility of results
• use and share collaborative tools
• share statistics about behavior of computer systems and optimizations
• expose choices and characteristics to end-users through unified interfaces

Conclusions - much more to be done!

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 72 / 73

Challenges for public repositories and collaborative tools:

• Data management

• MySQL vs schema-free databases
• central vs distributed repository
• performance vs portability
• extensibility
• online learning and data compaction
• easy sharing

• Portability of the framework across different architectures, OSes, tools

• Interfaces to “open up” tools, architectures, applications for external tuning
• simplicity and portability

• Reproducibility of experiments

• New publication model

Conclusions - much more to be done!

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 73 / 73

• Collective Mind: new plugin-based extensible infrastructure and schema-free
repository for collaborative and holistic analysis and tuning of computer systems -
will be released in May 2013 at HiPEAC computing week in Paris

• OpenME interface to “open up” compilers, run-time systems and applications for
unified external tuning

• Hundreds of codelets, thousands of data sets, multiple packages prepared for
various research scenarios on data mining

• Plugins for online auto-tuning and predictive modelling

• Portability across all major architectures and OS (Linux, Windows, Android)

• Collaboration with industry and academia

Preview of the 2nd talk

Google discussion

groups

ctuning-discussions

collective-mind

Twitter

c_tuning

grigori_fursin

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 74 / 73

Acknowledgements

• PhD students and postdocs (my Intel Exascale team)

Abdul Wahid Memon, Pablo Oliveira, Yuriy Kashnikov

• Colleague from NCAR, USA

Davide Del Vento and his colleagues/interns

• Colleagues from IBM, CAPS, ARC (Synopsis), Intel, Google, ARM, ST

• Colleagues from Intel (USA)

David Kuck and David Wong

• cTuning community:

• EU FP6, FP7 program and HiPEAC network of excellence

http://www.hipeac.net

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 75 / 73

Main references

• Grigori Fursin. Collective Tuning Initiative: automating and accelerating development and
optimization of computing systems. Proceedings of the GCC Summit’09, Montreal, Canada, June
2009

• Grigori Fursin and Olivier Temam. Collective Optimization: A Practical Collaborative Approach.
ACM Transactions on Architecture and Code Optimization (TACO), December 2010, Volume 7,
Number 4, pages 20-49

• Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea
Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin, Phil Barnard,
Elton Ashton, Edwin Bonilla, John Thomson, Chris Williams, Michael O'Boyle. MILEPOST GCC:
machine learning enabled self-tuning compiler. International Journal of Parallel Programming
(IJPP), June 2011, Volume 39, Issue 3, pages 296-327

• Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Olivier Temam and
Chengyong Wu. Deconstructing iterative optimization. ACM Transactions on Architecture and
Code Optimization (TACO), October 2012, Volume 9, Number 3

• Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier Temam,
Chengyong Wu. Evaluating Iterative Optimization across 1000 Data Sets. PLDI'10

• Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho Navarro.
Predictive runtime code scheduling for heterogeneous architectures. HiPEAC’09

Grigori Fursin “Systematizing tuning of computer systems using crowdsourcing and statistics” HPSC 2013, NTU, Taiwan March, 2013 76 / 73

Main references

• Lianjie Luo, Yang Chen, Chengyong Wu, Shun Long and Grigori Fursin. Finding representative
sets of optimizations for adaptive multiversioning applications. SMART'09 co-located with
HiPEAC'09

• Grigori Fursin, John Cavazos, Michael O'Boyle and Olivier Temam. MiDataSets: Creating The
Conditions For A More Realistic Evaluation of Iterative Optimization. HiPEAC’07

• F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint
and C.K.I. Williams. Using Machine Learning to Focus Iterative Optimization. CGO’06

•Grigori Fursin, Albert Cohen, Michael O'Boyle and Oliver Temam. A Practical Method For
Quickly Evaluating Program Optimizations. HiPEAC’05

•Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for
Determining a Lower Bound on Execution Time. Concurrency Practice and Experience, 16(2-3),
pages 271-292, 2004

• Grigori Fursin. Iterative Compilation and Performance Prediction for Numerical Applications.
Ph.D. thesis, University of Edinburgh, Edinburgh, UK, January 2004

