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Messages 

1st talk (Wednesday) 

Systematizing tuning of computer systems  

using crowdsourcing and statistics 

• Revisiting current design and optimization methodology 

• Leveraging experience and computer resources of multiple users 

• Using predictive modelling and data mining to improve computer systems 

 

2nd talk (Friday) 

Collective Mind: novel methodology, framework  

and repository to crowdsource auto-tuning 

• New plugin-based extensible infrastructure and repository for collaborative 

analysis and tuning of computer systems - will be released in May 2013 

• “Big data” enables cooperation between architecture, compiler, OS and 

application designers and mathematicians 

• Examples of auto-tuning and predictive modeling for numerical kernels 
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Motivation: back to 1993 

Semiconductor neural element - 
possible base of neural computers  

Modeling and understanding  
brain functions 

• Slow 
• Unreliable 
• Costly 
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Solution 

Motivation: back to basics 

Task 

Result 

End users 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 
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Solution 
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Decision 
(depends on user 

requirements) 
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Available choices 
(solutions) 

User requirements:  
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Solution 

Motivation: back to basics 

Decision 
(depends on user 

requirements) 

Result 

Available choices 
(solutions) 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 

Should provide  choices  
and help with decisions 

Hardware and 
software designers 

End users 

Task 
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Solution 

Motivation: back to basics 

Decision 
(depends on user 

requirements) 

Result 

Available choices 
(solutions) 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 

Service/application 
providers 

(supercomputing, 
cloud computing, 
mobile systems) 

Should provide  choices  
and help with decisions 

Hardware and 
software designers 

End users 

Task 
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Available solutions: hardware 

Companies compete hard to deliver many solutions with various characteristics: 
performance, power consumption, size, bandwidth, response time, reliability, cost … 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Available solutions: software 

Software developers try to keep pace and produce various 
algorithms, programming models, languages, analysis tools, compilers,  

run-time systems, databases, etc. 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 
ICC 12.0 ICC 12.1 

LLVM 2.6 

LLVM 2.7 

LLVM 2.8 

LLVM 2.9 
LLVM 3.0 

Phoenix 

MVS 

XLC 

Open64 

Jikes 
Testarossa 

OpenMP MPI 
HMPP 

OpenCL CUDA gprof prof 
perf oprofile 

PAPI TAU 

Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level 

TBB 

MKL 
ATLAS 

program-
level 

function-
level Codelet 

loop-level hardware 
counters 

IPA 
polyhedral 

transformations 
LTO 

threads 

process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 
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Solutions 

Challenges 

Task 

Result 
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Solutions 

Challenges 

Task 

Result 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.7 

LLVM 2.8 

LLVM 2.9 

LLVM 3.0 

Phoenix 

MVS XLC 

Open64 

Jikes 
Testarossa 

OpenMP MPI 

HMPP 

OpenCL 

CUDA 
gprof 

prof 

perf 

oprofile 

PAPI 

TAU 

Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level TBB 

MKL 

ATLAS program-
level 

function-
level 

Codelet 

loop-level 

hardware 
counters 

IPA 

polyhedral 
transformations 

LTO 
threads process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 

cache size 

frequency 

bandwidth 

HDD size 

TLB 

ISA 

memory size 

cores 

processors 

threads 

power 
consumption execution time 

reliability 

1) Rising complexity of computer systems:  
   too many design and optimization choices 

2) Performance is not anymore the only 
requirement: 

multiple user objectives vs choices 
benefit vs optimization time 

3)  Complex relationship and interactions 
between ALL software and hardware 
components. 

4) Too many tools with non-unified interfaces 
changing from version to version:  

technological chaos 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Solutions 

Challenges 

Task 

Result 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.7 

LLVM 2.8 

LLVM 2.9 

LLVM 3.0 

Phoenix 

MVS XLC 

Open64 

Jikes 
Testarossa 

OpenMP MPI 

HMPP 

OpenCL 

CUDA 
gprof 

prof 

perf 

oprofile 

PAPI 

TAU 

Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level TBB 

MKL 

ATLAS program-
level 

function-
level 

Codelet 

loop-level 

hardware 
counters 

IPA 

polyhedral 
transformations 

LTO 
threads process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 

cache size 

frequency 

bandwidth 

HDD size 

TLB 

ISA 

memory size 

cores 

processors 

threads 

power 
consumption execution time 

reliability 

Result: 

• finding the right solution for end-user is 
extremely challenging 

• everyone is lost in choices 

• dramatic increase in development time 

• low ROI 

• underperforming systems 

• waste of energy 

• ad-hoc, repetitive and error-prone 
manual tuning 

• slowing innovation in science and 
technology 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Result: 

• finding the right solution for end-user is 
extremely challenging 

• everyone is lost in choices 

• dramatic increase in development time 

• low ROI 

• underperforming systems 

• waste of energy 

• ad-hoc, repetitive and error-prone 
manual tuning 

• slowing innovation in science and 
technology 

 

Understanding and modeling of the overall 
relationship between end-user algorithms, 
applications, compiler optimizations, 
hardware designs, data sets and run-time 
behavior became simply infeasible! 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Treat 
computer 

system as a 
black box 

 

Attempts to solve these problems: auto-tuning 

Task 

Result 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 

Use auto-tuning:  

Explore multiple 
choices empirically: 

learn behavior of 
computer systems 
across executions 

Covered all 
components in the 
last 2 decades and 

showed high 
potential but … 
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• Optimization spaces are large and non-linear with many local minima 

• Exploration is slow and ad-hoc (random, genetic, some heuristics) 

• Only a few benchmarks are considered 

• Often the same (one) dataset is used 

• Only part of the system is taken into account 
(rarely reflect behavior of the whole system) 

• No knowledge sharing 

Auto-tuning shows high potential for nearly 2 decades but still far from 
the mainstream in production environments.  

Why? 

Attempts to solve these problems: auto-tuning 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 
Use machine 

learning to speed 
up exploration 

Apply predictive 
modeling to suggest 
profitable solutions 
based on properties 

of a task and a 
system 

Covered all 
components in the 

last decade and 
showed high 

potential but … 

0 

2 

4 

6 

Attempts to solve these problems: machine learning 
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• Selection of machine learning models and right properties is non-trivial:  
ad-hoc in most of the cases 

• Limited training sets 

• Only part of the system is taken into account 
(rarely reflect behavior of the whole system) 

• No knowledge sharing 

Machine learning (classification, predictive modeling) shows high 
potential during past decade but still far from the mainstream.  

Why? 

Attempts to solve these problems: machine learning 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 

Co-design: 

Explore choices and 
behavior of the 
whole system. 

Attempts to solve these problems: co-design 

Showed high 
potential in the last 

years but … 
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• Even more choices to explore and analyze 

• Often impossible to expose tuning choices or obtain characteristics at all levels 

• Limited training sets 

• Still no knowledge sharing 

Co-design is currently a buzz word and a hot research topic  

but still far from the mainstream.  

Why? 

Attempts to solve these problems: co-design 
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Can we crowdsource auto-tuning? My main focus since 2004 

Can we leverage their experience and computational resources? 

Can we transparently distribute optimization  
and learning across many users? 

Millions of users run realistic applications on different architectures with 
different datasets, run-time systems, compilers, optimizations! 

Got stuck with a limited number of benchmarks, datasets, 
architectures and a large number of optimizations and generated data 

- needed dramatically new approach! 
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Challenges 

User  

application 

 

 

 

 

 

 

 

 

 

 

 

Hot function 

How can we evaluate optimizations in a realistic environment without 
complex recompilation frameworks and without source code? 
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Challenges 

User  
application 

 
 
 
 
 
 
 
 
 
 
 

Hot function 

Oref 

First problem:  
need reference run with the same dataset 

User  
application 

 
 
 
 
 
 
 
 
 
 
 

Hot function 

Onew 

Speed up 
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Challenges 

User  
application 

 
 
 
 
 
 
 
 
 
 
 

Hot function 

Oref 

3
0

  r
ep
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it
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Second problem:  variation in execution time due to different run-time states 
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Challenges 

User  
application 

 
 
 
 
 
 
 
 
 
 
 

Hot function 

Oref 

3
0

  r
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How can we evaluate some optimization in a realistic environment? 

Second problem:  variation in execution time due to different run-time states 

(parallel processes, adaptive scheduling, pinning, cache state, bus state, 
frequency changes, etc) 
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Our approach: static multiversioning 

Application 
 
 
 
 
 
 
 
 
 
 
 
 

Select most time consuming code sections 
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Our approach: static multiversioning 

Application 
 
 
 
 
 
 
 
 
 
 
 

Create multiple versions of time 
consuming code sections 
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Our approach: static multiversioning 

Application 
 
 
 
 
 
 
 
 
 
 
 
 

Add monitoring routines  

monitor_start 

monitor_stop 

monitor_start 

monitor_stop 
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Our approach: static multiversioning 

Application 
 
 
 
 
 
 
 
 
 
 
 
 

Apply various transformations over clones 
of code sections 

monitor_start 

monitor_stop 

monitor_start 

monitor_stop 
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Our approach: static multiversioning 

Application 
 
 
 
 
 
 
 
 
 
 
 
 

Apply various transformations over clones 
of code sections 

Select global or fine-grain internal compiler (or algorithm) optimizations 

monitor_start 

monitor_stop 

monitor_start 

monitor_stop 
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Our approach: static multiversioning 

Application 
 
 
 
 
 
 
 
 
 
 
 
 

Apply various transformations over clones 
of code sections 

monitor_start 

monitor_stop 

monitor_start 

monitor_stop 
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Application 
 
 
 
 
 
 
 
 
 
 
 
 

Apply various transformations over clones 
of code sections 

Differerent ISA; 
manual transformations, etc 

Our approach: static multiversioning 

monitor_start 

monitor_stop 

monitor_start 

monitor_stop 
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Application 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final instrumented program 

Our approach: static multiversioning 

monitor_start 

monitor_stop 

monitor_start 

monitor_stop 
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function calls

IP
C

IPC for subroutine resid of benchmark mgrid across calls 

Observations: program execution phases 

•  Define stability by 3 consecutive or periodic executions                   
with the same IPC 

•  Predict further occurrences with the same IPC                              
(using period and length of regions with stable performance) 
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function calls

IP
C

•  Define stability by 3 consecutive or periodic executions                   
with the same IPC 

•  Predict further occurrences with the same IPC                              
(using period and length of regions with stable performance) 

period=7, length=2 

Observations: program execution phases 

IPC for subroutine resid of benchmark mgrid across calls 
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Observations: program execution phases 

Some programs exhibit stable behavior  

0

0.02

0.04

0.06

0.08

0.1

0.12

1 42 70 98 213 2025

function calls

ti
m

e
 (

s
e
c
)

startup (phase detection) or end of the optimization process (best option found)

evaluation of 1 option

1 2 3 1 2 3 

1) Consider clone with new optimization is evaluated after 2 consecutive executions 

of the code section with the same performance 

2)  Ignore one next execution to avoid transitional effects 

3)  Check baseline performance (to verify stability prediction) 
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Observations: program execution phases 

• Can transparently to end-user evaluate multiple optimizations 

• Statically enable adaptive binaries (that can react to dataset or run-time 

state changes without any need for JIT or other complex frameworks) 
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• Grigori Fursin et al. A Practical Method For Quickly Evaluating Program Optimizations. Proceedings of the 1st International 

Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS, pages 29-46, 

Barcelona, Spain, November 2005    Highest ranked paper 

• Can transparently to end-user evaluate multiple optimizations 

• Statically enable adaptive binaries (that can react to dataset or run-time 

state changes without any need for JIT or other complex frameworks) 

Transparent monitoring and adaptation of static programs 
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Observations: random behavior 

Randomly select versions at run-time 

Monitor  speedup variation over time 

jpeg decoder, GCC 4.5, Intel architecture 
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Transparently measuring the impact of optimizations 

Dataset1 

 

DatasetN 

 

Execution 

Intercept exit() and call 
Collective Stats Handler 

Prolog of the time consuming code 

Start profiling and 

Randomly select version (original 
or clone) 

 Cloned code 

(Optimizations2) 

 

 

Stop profiling 

Original code 

(Optimizations1) 

 

 Epilog of the time consuming code 

Binary 

- Profiling Routines  

- Collective Stats  

- Unique IDs 

 

Function clones 
with different 
optimizations  

Collective Compiler 

GCC Interface: 
- create code clones 
- Apply optimizations 
per clone 
- intercept 
main()and add 
auxiliary routines 
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Transparently measuring the impact of optimizations 

Dataset1 

 

DatasetN 

 

Execution 

Intercept exit() and call 
Collective Stats Handler 

Prolog of the time consuming code 

Start profiling and 

Randomly select version (original 
or clone) 

 Cloned code 

(Optimizations2) 

 

 

Stop profiling 

Original code 

(Optimizations1) 

 

 Epilog of the time consuming code 

Collective Compiler Binary 

- Profiling Routines  

- Collective Stats  

- Unique IDs 

 

Function clones 
with different 
optimizations  

GCC Interface: 
- create code clones 
- Apply optimizations 
per clone 
- intercept 
main()and add 
auxiliary routines 

 

Network Web Server 

Collective Optimization 
Web Services 

- Register events 
- Query database 
- Get statistics 
              … 

Collective Optimization 
Database 

- COMPILATION table 
- EXECUTION table 
- AUXILARY tables 

 
 
 

MySQL 

cTuning.org 

Initiate recompilation if better optimization setting 
is suggested based on Collective Knowledge 

UserX 

ProgramA 

ArchB 

UserY 

ProgramC 

ArchD 
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Speeding up research (2005-cur.) 

• Grigori Fursin et al. Collective Optimization: A Practical Collaborative Approach. ACM Transactions on Architecture and 

Code Optimization (TACO), December 2010, Volume 7, Number 4, pages 20-49 

Concept is included into EU HiPEAC research vision 2012-2020 

• Grigori Fursin et al. Collective optimization. Proceedings of the International Conference on High Performance Embedded 

Architectures & Compilers (HiPEAC 2009), Paphos, Cyprus, January 2009 

• Can observe behavior and evaluate optimizations in various GRID 

servers, cloud services, desktops, etc … 

• multiple benchmarks/datasets 

• multiple architectures 

• multiple compilers 

• multiple optimizations 

 

Opened up many interesting research opportunities, 

particularly for data mining and predictive modeling! 
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Collaborative exploration of large optimization spaces 

Multi-objective optimizations (depend on user scenarios): 

HPC and desktops: improving execution time 
Data centers and real-time systems: improving execution and compilation time 

Embedded systems: improving execution time and code size 

Now additional requirement: reduce power consumption 

susan corners kernel 

Intel Core2 

GCC 4.4.4  
similar results on ICC 11.1  

baseline opt=-O3 
~100 optimizations  

random combinations  
(50% probability) 

Nowadays used for  
auto-parallelization, 

reduction of contentions, 
reduction of communication 

costs, etc. 
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Optimizations

Start: 50% probability to select optimization (uniform distribution) 

Online focused exploration and learning 

Avoiding collection of huge amount of data -  

filtering (compacting) and learning space on the fly 
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Current random selection of optimizations reduced execution time:  

reduce probabilities of the selected optimizations 

Online focused exploration and learning 
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Current random selection of optimizations improved execution time:  

reward probabilities of the selected optimizations 

Online focused exploration and learning 
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A – Break up large expression trees 

B – Value propagation 

C – Hoisting of loop invariants 

D – Loop normalization 

E – Loop unrolling 

F – Mark constant variables 

G – Dismantle array instructions 

H – Eliminating copies 

A B 
C D 

E 

F G H 

“good optimizations” across all programs: 

Faster then traditional search (~50 iterations). 

Can stuck in local minima 

Speedups 1.1-2x. Sometimes better to reduce 

Intel compiler optimization level! 

Online focused exploration and learning 
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14 transformations, sequences of length 5, search space = 396000 

• F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint and C.K.I. Williams. Using 

Machine Learning to Focus Iterative Optimization. Proceedings of the 4th Annual International Symposium on Code Generation 

and Optimization (CGO), New York, NY, USA, March 2006 

Online focused exploration and learning 
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AMD platform, GCC 4.5, image corner detection (susan_corners) 

Online probabilistic exploration 
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Reactions to optimizations across multiple datasets 

http://ctuning.org/cbench 

MiBench, 20 datasets per benchmark, 200/1000 random combination of 

Open64 (GCC) compiler flags, 5 months of experiments 

jpeg_d 

(clustering) 

dijkstra 

(not sensitive) 
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Unifying adaptation of statically compiled programs 

… 

Statically-compiled adaptive binaries and libraries 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Step 1 
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… 

Representative set of versions for the following optimization cases to minimize 
execution time, power consumption and code-size across all available datasets: 

 optimizations for different datasets 
 optimizations/compilation for different architectures (heterogeneous or 

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the 
same ISA with extensions such as 3dnow, SSE, etc or virtual environments) 

 optimizations for different program phases or different  run-time environment 
behavior 

Statically-compiled adaptive binaries and libraries 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Step 2 

Unifying adaptation of statically compiled programs 
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Extract 
dataset 
features 

Selection mechanism optimized for low run-
time overhead 

… 

Representative set of versions for the following optimization cases to minimize 
execution time, power consumption and code-size across all available datasets: 

 optimizations for different datasets 
 optimizations/compilation for different architectures (heterogeneous or 

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the 
same ISA with extensions such as 3dnow, SSE, etc or virtual environments) 

 optimizations for different program phases or different  run-time environment 
behavior 

Statically-compiled adaptive binaries and libraries 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Machine learning 
techniques to find 
mapping between 
different run-time 

contexts and 
representative 

versions 

Step 3 

Unifying adaptation of statically compiled programs 
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Extract 
dataset 
features 

Monitor run-time behavior or architectural 
changes  (in virtual, reconfigurable or 

heterogeneous environments)  using timers 
or performance counters 

Selection mechanism optimized for low run-
time overhead 

… 

Representative set of versions for the following optimization cases to minimize 
execution time, power consumption and code-size across all available datasets: 

 optimizations for different datasets 
 optimizations/compilation for different architectures (heterogeneous or 

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the 
same ISA with extensions such as 3dnow, SSE, etc or virtual environments) 

 optimizations for different program phases or different  run-time environment 
behavior 

Statically-compiled adaptive binaries and libraries 

Machine learning 
techniques to find 
mapping between 
different run-time 

contexts and 
representative 

versions 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Dynamic 

Unifying adaptation of statically compiled programs 
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Online tuning: adaptive scheduling 
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• Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho Navarro. Predictive runtime code scheduling 

for heterogeneous architectures.  Proceedings of the International Conference on High Performance Embedded Architectures & 

Compilers (HiPEAC 2009), Paphos, Cyprus, January 2009 

Online tuning: adaptive scheduling 
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Online tuning: adaptive scheduling 
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Online tuning: adaptive scheduling 
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Optimization knowledge reuse across programs 

Program 
Datasets Architectures 

Datasets 
Datasets 

Architectures 
Architectures 

Architectures 
Architectures 

Started systematizing knowledge per program across datasets and architectures 
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How to reuse knowledge among programs? 

Program 
Datasets Architectures 

Datasets 
Datasets 

Architectures 
Architectures 

Architectures 
Architectures 

Started systematizing knowledge per program across datasets and architectures 

Program 
Program 

Program 

Optimization knowledge reuse across programs 
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1) Add as many various features as possible (or use expert knowledge): 
 
          MILEPOST GCC with Interactive Compilation Interface: 

ft1  - Number of basic blocks in the method 
                                … 
ft19 - Number of direct calls in the method 
ft20 - Number of conditional branches in the method  
ft21 - Number of assignment instructions in the method  
ft22 - Number of binary integer operations in the method  
ft23 - Number of binary floating point operations in the method  
ft24 - Number of instructions in the method  
… 
ft54 - Number of local variables that are pointers in the method  
ft55 - Number of static/extern variables that are pointers in the method  
 

2) Correlate features and objectives in cTuning using nearest neighbor classifiers, decision trees, SVM, 
fuzzy pattern matching, etc. 

3) Given new program, dataset, architecture, predict behavior based on prior knowledge! 

Data mining and machine learning 

              Code patterns: 
for                F 

  for              F 

    for            F 

        … 

       load …      L 

       mult …      A 

       store …     S 

        … 

 

Collecting data from multiple users in a unified way allows to apply  various data mining 
(machine learning) techniques to detect relationship between the behaviour and features 

of all components of the computer systems 
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Nearest-neighbour classifier 

Example: Euclidean distance based on static program 
features normalized by number of instructions 
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Optimization prediction 

Grigori Fursin et al. MILEPOST GCC: machine learning enabled self-tuning compiler.  
International Journal of Parallel Programming (IJPP), June 2011, Volume 39, Issue 3, pages 296-327 
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Most informative Performance Counters 

1) L1_TCA 2) L1_DCH 3) TLB_DM 

4) BR_INS 5) RES_STL 6) TOT_CYC 

7) L2_ICH 8) VEC_INS 9) L2_DCH 

10) L2_TCA 11) L1_DCA 12) HW_INT 

13) L2_TCH 14) L1_TCH 15) BR_MS 

Analysis of the importance of the performance counters.  

The data contains one good optimization sequence per benchmark.  

 

Calculating mutual information between a subset of the performance 

counters and good optimization sequences 

Principle Component Analysis: 

• John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O'Boyle and Olivier Temam. Rapidly Selecting Good 

Compiler Optimizations using Performance Counters. Proceedings of the 5th Annual International Symposium on Code Generation 

and Optimization (CGO), San Jose, USA, March 2007 

Dynamic features 
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And much more … 

• Analysis and detection of contentions in multi-core systems with 
shared cache 

• Fast CPU/memory bound detection through breaking code 
semantics 

• Software/hardware co-design (predicting better architecture 
designs) 

• Performance/power balancing (through frequency variation) 

• Decomposition of large applications into codelets for performance 
modeling 



Grigori Fursin        “Systematizing tuning of computer systems using crowdsourcing and statistics”            HPSC 2013, NTU, Taiwan          March, 2013                66 / 73 

• Used in MILEPOST project (2007-2009) by IBM, CAPS, University of Edinburgh, INRIA to 
build first public machine-learning based compiler 

• Opened for public access in 2009 to continue collaborative R&D 
 

Public Collective Tuning Portal (cTuning.org) 
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Share 

Explore 

Model 

Discover 

Reproduce 

Extend 

Have fun! 

Enabling reproducibility of results (new publication model) 

Grigori Fursin et al. MILEPOST GCC: machine learning enabled self-tuning compiler.  
International Journal of Parallel Programming (IJPP) , June 2011, Volume 39, Issue 3, pages 296-327 

Substitute many tuning pragmas just with one that is converted into combination of optimizations: 
#ctuning-opt-case 24857532370695782 

Accepted as an EU HiPEAC theme (2012-2016) 

http://ctuning.org/wiki/index.php/Special:CDatabase?request=view_opt_case&opt_case=24857532370695782
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What have we learnt from cTuning1 

It’s fun working with the community! 

Some comments about MILEPOST GCC from Slashdot.org: 

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design 

GCC goes online on the 2nd of July, 2008. Human decisions are 
removed from compilation. GCC begins to learn at a geometric rate. 
It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic, 
they try to pull the plug. GCC strikes back… 
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What have we learnt from cTuning1 

It’s fun working with the community! 

Some comments about MILEPOST GCC from Slashdot.org: 

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design 

GCC goes online on the 2nd of July, 2008. Human decisions are 
removed from compilation. GCC begins to learn at a geometric rate. 
It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic, 
they try to pull the plug. GCC strikes back… 

 

Not all feedback is positive - helps you learn, improve tools  
and motivate new research directions! 

 
Community was interested to validate and improve techniques! 
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Community is very interested in open “big data” for collaborative R&D 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 
GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 

LLVM 2.6 
LLVM 2.7 

LLVM 2.8 

LLVM 2.9 

LLVM 3.1 

Phoenix 

MVS XLC 

Open64 

Jikes 

Testarossa 

OpenMP 

MPI 

HMPP 

OpenCL 

CUDA 

gprof 

prof 

perf 

oprofile 

PAPI 

TAU 

Scalasca 

VTune 

Amplifier 

scheduling 

algorithm-level 

TBB 

MKL 

ATLAS program-level 

function-level 

Codelet 

loop-level 
hardware 
counters 

IPA 

polyhedral 
transformations 

LTO 

threads 

process pass reordering 

run-time adaptation 

per phase 
reconfiguration 

cache size 

frequency 
bandwidth 

HDD size 

TLB 

ISA 

memory size 

cores processors 

threads 

power consumption 

execution time reliability 

Current state of computer engineering 

likwid 

Classification, 
predictive 
modeling 

Optimal 
solutions 

Systematization and unification 
of collective knowledge 

(big data) 

“crowd” 

Collaborative Infrastructure and repository 
for continuous online learning 

End-user 
task 

Result 

Quick, non-reproducible hack? 
Ad-hoc heuristic? 

Quick publication? 
Waste of expensive resources 

and energy? 

cTuning.org collaborative 
approach 

Continuous systematization and 
unification of design and 

optimization of computer systems 

Extrapolate collective knowledge to build faster and more power efficient 
computer systems to continue innovation in science and technology! 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Now have public repository, tools, benchmarks, datasets  
and methodology that can help: 

 
Academia (students and researchers): 

• Instead of loosing time on developing tools for ever changing environments, 
focus on statistical, data mining and machine learning techniques to: 

• unify program optimization, design space exploration, run-time adaptation 
• detect important characteristics of computer systems 
• detect representative benchmarks and data sets 
• evaluate multiple machine learning algorithms to predict optimizations or 
hardware designs or dynamic multi-objective adaptation (SVM, decision 
trees, hierarchical modeling, etc) 

 
Industry: 

• restore confidence in academic research due to reproducibility of results 
• use and share collaborative tools 
• share statistics about behavior of computer systems and optimizations 
• expose choices and characteristics to end-users through unified interfaces 

Conclusions - much more to be done! 



Grigori Fursin        “Systematizing tuning of computer systems using crowdsourcing and statistics”            HPSC 2013, NTU, Taiwan          March, 2013                72 / 73 

Challenges for public repositories and collaborative tools: 
 
• Data management  

• MySQL vs schema-free databases 
• central vs distributed repository 
• performance vs portability  
• extensibility 
• online learning and data compaction 
• easy sharing 
 

• Portability of the framework across different architectures, OSes, tools 
 

• Interfaces to “open up” tools, architectures, applications for external tuning 
• simplicity and portability 

 
• Reproducibility of experiments 
 

• New publication model 

Conclusions - much more to be done! 
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• Collective Mind: new plugin-based extensible infrastructure and schema-free 
repository for collaborative and holistic analysis and tuning of computer systems - 
will be released in May 2013 at HiPEAC computing week in Paris 

• OpenME interface to “open up” compilers, run-time systems and applications for 
unified external tuning 

• Hundreds of codelets, thousands of data sets, multiple packages prepared for 
various research scenarios on data mining 

• Plugins for online auto-tuning and predictive modelling 

• Portability across all major architectures and OS (Linux, Windows, Android) 

• Collaboration with industry and academia 

Preview of the 2nd talk 

Google discussion 

groups 

 

ctuning-discussions 

 

collective-mind 

 

Twitter 

 

c_tuning 

 

grigori_fursin 
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